Difference between revisions of "Cosmological Inflation: The Canonic Theory"

From Universe in Problems
Jump to: navigation, search
Line 22: Line 22:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">Variation of the action with respect to independent variables $\varphi $ and $\partial _\mu \varphi$ reads
 
     <p style="text-align: left;">Variation of the action with respect to independent variables $\varphi $ and $\partial _\mu \varphi$ reads
$$\delta S = \int {d^4 x\left[ {\frac{{\partial L}}{{\partial \varphi }}\delta \varphi + \frac{{\partial L}}{{\partial \left( {\partial _\mu \varphi } \right)}}\delta \left( {\partial _\mu \varphi } \right)} \right]} = 0.
+
$$\delta S = \int {d^4 x\left[ {\frac{\partial L}{\partial \varphi }\delta \varphi + \frac{\partial L}{\partial \left( {\partial _\mu \varphi } \right)}\delta \left( {\partial _\mu \varphi } \right)} \right]} = 0.
 
$$
 
$$
 
Integrate the second term by parts and use the boundary condition $\delta \varphi = 0$ on infinity to obtain
 
Integrate the second term by parts and use the boundary condition $\delta \varphi = 0$ on infinity to obtain
 
$$
 
$$
\frac{{\partial L}}
+
\frac{\partial L}{\begin{array}{l}
{\begin{array}{l}
+
 
\partial \varphi \\
 
\partial \varphi \\
 
\\
 
\\
 
\end{array}}
 
\end{array}}
- \frac{\partial }{{\partial x^\mu }}\left( {\frac{{\partial L}}{{\partial \left( {\partial _\mu \varphi } \right)}}} \right) = 0.
+
- \frac{\partial }{\partial x^\mu }\left( {\frac{\partial L}{\partial \left( {\partial _\mu \varphi } \right)}} \right) = 0.
 
$$
 
$$
 
For the considered Lagrangian one obtains
 
For the considered Lagrangian one obtains
Line 47: Line 46:
 
<div id="inf2"></div>
 
<div id="inf2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Using the action for free scalar field minimally coupled to gravitation
 
Using the action for free scalar field minimally coupled to gravitation
 
\[S_\varphi=\int d^4x\sqrt{-g}\left(\frac12 g^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi\right)\]
 
\[S_\varphi=\int d^4x\sqrt{-g}\left(\frac12 g^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi\right)\]
 
obtain action for this field in the FRW metric.
 
obtain action for this field in the FRW metric.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
 
<div id="inf3"></div>
 
<div id="inf3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
Using the action obtained in the previous problem, obtain evolution equation for the scalar field in the expanding Universe.
 
Using the action obtained in the previous problem, obtain evolution equation for the scalar field in the expanding Universe.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
 
<div id="inf4"></div>
 
<div id="inf4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
 
Calculate the density and pressure of homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ in the FRW metric.
 
Calculate the density and pressure of homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ in the FRW metric.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
 
<div id="inf5"></div>
 
<div id="inf5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
Starting from the scalar field's action in the form
 
Starting from the scalar field's action in the form
 
\[
 
\[
Line 156: Line 155:
 
<div id="inf5n"></div>
 
<div id="inf5n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
Construct the Lagrange function describing the dynamics of the Universe filled with a scalar field in potential $V(\varphi)$. Using the obtained Lagrangian, obtain the Friedman equations and the Klein--Gordon equation.
 
Construct the Lagrange function describing the dynamics of the Universe filled with a scalar field in potential $V(\varphi)$. Using the obtained Lagrangian, obtain the Friedman equations and the Klein--Gordon equation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 170: Line 169:
 
{2}\sqrt { - g} R + \sqrt { - g} \left( {\frac{1}
 
{2}\sqrt { - g} R + \sqrt { - g} \left( {\frac{1}
 
{2}{g^{\mu \nu }}{\partial _\mu }\varphi {\partial _\nu }\varphi  - V\left( \varphi  \right)} \right); \hfill \\
 
{2}{g^{\mu \nu }}{\partial _\mu }\varphi {\partial _\nu }\varphi  - V\left( \varphi  \right)} \right); \hfill \\
   R =  - 6\left( {\frac{{\ddot a}}
+
   R =  - 6\left( {\frac{\ddot a}{a} + \frac{{{\dot a}^2}}{{a^2}} + \frac{k}{a^2} \right);~
{a} + \frac{{{{\dot a}^2}}}
+
{{{a^2}}} + \frac{k}
+
{{{a^2}}}} \right);~
+
 
   \sqrt { - g}  \propto {a^3}; \hfill \\
 
   \sqrt { - g}  \propto {a^3}; \hfill \\
 
   L = 3\left( {{a^2}\ddot a + a{{\dot a}^2} + ak} \right) + {a^3}\left( {\frac{1}
 
   L = 3\left( {{a^2}\ddot a + a{{\dot a}^2} + ak} \right) + {a^3}\left( {\frac{1}
Line 183: Line 179:
 
   q = \left( {a,\varphi } \right); \hfill \\
 
   q = \left( {a,\varphi } \right); \hfill \\
 
   \frac{d}
 
   \frac{d}
{{dt}}\frac{{\partial L}}
+
{{dt}}\frac{\partial L}{\partial \dot q} - \frac{\partial L}{\partial q} = 0; \hfill \\
{{\partial \dot q}} - \frac{{\partial L}}
+
{{\partial q}} = 0; \hfill \\
+
 
   2\frac{{\ddot a}}
 
   2\frac{{\ddot a}}
{a} + {\left( {\frac{{\dot a}}
+
{a} + {\left( {\frac{\dot a}a} \right)^2} + \frac{k}{a^2} =  - \frac{1}
{a}} \right)^2} + \frac{k}
+
{{{a^2}}} =  - \frac{1}
+
 
{2}{{\dot \varphi }^2} + V\left( \varphi  \right); \hfill \\
 
{2}{{\dot \varphi }^2} + V\left( \varphi  \right); \hfill \\
   \ddot \varphi  + 3\frac{{\dot a}}
+
   \ddot \varphi  + 3\frac{\dot a}{a}\varphi  + \frac{dV}{d\varphi} = 0. \hfill \\
{a}\varphi  + \frac{{dV}}
+
{{d\varphi }} = 0. \hfill \\
+
 
\end{gathered} \]</p>
 
\end{gathered} \]</p>
 
   </div>
 
   </div>
Line 201: Line 191:
 
<div id="inf6"></div>
 
<div id="inf6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 7 ===
 
Obtain the equation of motion for a homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ starting from the conservation equation \[\dot\rho+3\frac{\dot a}{a}(\rho+p)=0.\]
 
Obtain the equation of motion for a homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ starting from the conservation equation \[\dot\rho+3\frac{\dot a}{a}(\rho+p)=0.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 224: Line 214:
 
<div id="inf13"></div>
 
<div id="inf13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
Obtain the equation of motion for the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ using the analogy with Newtonian dynamics.
 
Obtain the equation of motion for the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ using the analogy with Newtonian dynamics.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 233: Line 223:
 
Use the analogy $\varphi \to x;\,a^3 \to m;\;\,Va^3 \to \bar V$ and Newton's equation of motion:
 
Use the analogy $\varphi \to x;\,a^3 \to m;\;\,Va^3 \to \bar V$ and Newton's equation of motion:
 
$$
 
$$
\frac{d}{{dt}}m\dot x = - \frac{{d\bar V}}{{dx}},
+
\frac{d}{{dt}}m\dot x = - \frac{d\bar V}{dx},
 
$$
 
$$
 
$$
 
$$
\frac{d}{{dt}}a^3 \dot \varphi = - a^3 \frac{{dV}}{{dx}},
+
\frac{d}{dt}a^3 \dot \varphi = - a^3 \frac{dV}{dx},
 
$$
 
$$
 
to obtain
 
to obtain
Line 248: Line 238:
 
<div id="inf14n"></div>
 
<div id="inf14n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 9 ===
 
Express $V(\varphi)$ and $\varphi$ through the Hubble parameter $H$ and its derivative
 
Express $V(\varphi)$ and $\varphi$ through the Hubble parameter $H$ and its derivative
 
$\dot{H}$ for the Universe filled with quintessence.
 
$\dot{H}$ for the Universe filled with quintessence.
Line 262: Line 252:
 
<div id="inf14"></div>
 
<div id="inf14"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 10 ===
 
Show that Friedman equations for the scalar field $\varphi(t)$ in potential $V(\varphi)$ can be presented in the form
 
Show that Friedman equations for the scalar field $\varphi(t)$ in potential $V(\varphi)$ can be presented in the form
 
\[H^2=\frac{8\pi G}{3}\left(\frac12 \dot\varphi^2+V(\varphi)\right),\]
 
\[H^2=\frac{8\pi G}{3}\left(\frac12 \dot\varphi^2+V(\varphi)\right),\]
Line 271: Line 261:
 
     <p style="text-align: left;">The first equation is precisely the first Friedman equation with inserted energy density of scalar field. To obtain the second equation differentiate with respect to time the definition of hubble parameter:
 
     <p style="text-align: left;">The first equation is precisely the first Friedman equation with inserted energy density of scalar field. To obtain the second equation differentiate with respect to time the definition of hubble parameter:
 
$$\displaystyle \begin{array}{l}
 
$$\displaystyle \begin{array}{l}
\displaystyle H = \frac{{\dot a}}{a};\quad \dot H = \frac{{\ddot aa - \dot a^2 }}{{a^2 }} = \frac{{\ddot a}}{a} - \frac{{\dot a^2 }}{{a^2 }} = \\
+
\displaystyle H = \frac{\dot a}{a};\quad \dot H = \frac{\ddot aa - \dot a^2 }{a^2 } = \frac{\ddot a}{a} - \frac{\dot a^2 }{a^2 } = \\
 
\\
 
\\
\displaystyle - \frac{{4\pi G}}{3}(\rho + 3p) - \frac{{8\pi G}}{3}\rho = - \frac{{4\pi G}}{3}\left( {3\rho + 3p} \right) = \\
+
\displaystyle - \frac{4\pi G}{3}(\rho + 3p) - \frac{{8\pi G}}{3}\rho = - \frac{4\pi G}{3}\left( {3\rho + 3p} \right) = \\
 
\\
 
\\
 
\displaystyle - 4\pi G(\rho + p) = - 4\pi G\dot \varphi ^2 \\
 
\displaystyle - 4\pi G(\rho + p) = - 4\pi G\dot \varphi ^2 \\
Line 280: Line 270:
 
The second way of solution:
 
The second way of solution:
 
$$
 
$$
H = \sqrt {\frac{{8\pi G\rho }}{3}} = \sqrt {\frac{{8\pi G}}{3}\left( {\frac{1}{2}\dot \varphi ^2 + V(\varphi )} \right)}
+
H = \sqrt {\frac{8\pi G\rho }3} = \sqrt {\frac{8\pi G}{3}\left( {\frac{1}{2}\dot \varphi ^2 + V(\varphi )} \right)}
 
$$
 
$$
 
Differentiate it by time to obtain:
 
Differentiate it by time to obtain:
 
$$
 
$$
2H\dot H = \frac{{8\pi G}}{3}\left( {\dot \varphi \ddot \varphi + V'(\varphi )\dot \varphi } \right) = - 8\pi GH\dot \varphi ^2
+
2H\dot H = \frac{8\pi G}{3}\left( {\dot \varphi \ddot \varphi + V'(\varphi )\dot \varphi } \right) = - 8\pi GH\dot \varphi ^2
 
$$
 
$$
 
From the the equation for the scalar field
 
From the the equation for the scalar field
Line 304: Line 294:
 
<div id="inf15"></div>
 
<div id="inf15"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 11 ===
 
Provided that the scalar field $\varphi(t)$ is a single--valued function of time, transform the second order equation for the scalar field into a system of first order equations.
 
Provided that the scalar field $\varphi(t)$ is a single--valued function of time, transform the second order equation for the scalar field into a system of first order equations.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 312: Line 302:
 
$$
 
$$
 
\begin{array}{l}
 
\begin{array}{l}
\displaystyle H^2 = \frac{{8\pi G}}{3}\left( {\frac{1}{2}\dot \varphi ^2 + V(\varphi )} \right), \\
+
\displaystyle H^2 = \frac{8\pi G}{3}\left( {\frac{1}{2}\dot \varphi ^2 + V(\varphi )} \right), \\
 
\displaystyle \dot H = - 4\pi G\dot \varphi ^2.
 
\displaystyle \dot H = - 4\pi G\dot \varphi ^2.
 
\end{array}
 
\end{array}
Line 318: Line 308:
 
From the second equation it follows that
 
From the second equation it follows that
 
$$
 
$$
\dot \varphi = - \frac{1}{{4\pi G}}H'(\varphi ).
+
\dot \varphi = - \frac{1}{4\pi G}H'(\varphi ).
 
$$
 
$$
 
Substitute it into the first equation of the system to obtain
 
Substitute it into the first equation of the system to obtain
Line 327: Line 317:
 
$$
 
$$
 
\begin{array}{l}
 
\begin{array}{l}
\displaystyle\dot \varphi = - \frac{1}{{4\pi G}}H'(\varphi ) \\
+
\displaystyle\dot \varphi = - \frac{1}{4\pi G}H'(\varphi ) \\
 
\\
 
\\
 
\displaystyle H'^2 - 12\pi GH^2 = - 32\pi ^2 G^2 V\left( \varphi \right) \\
 
\displaystyle H'^2 - 12\pi GH^2 = - 32\pi ^2 G^2 V\left( \varphi \right) \\
Line 336: Line 326:
 
It is useful to introduce the reduced planck mass:
 
It is useful to introduce the reduced planck mass:
 
$$
 
$$
M^*_{Pl}{}^2 \equiv \frac{1}{{8\pi G}}
+
M^*_{Pl}{}^2 \equiv \frac{1}{8\pi G}
 
$$
 
$$
 
Then the system can be rewritten in the form:
 
Then the system can be rewritten in the form:
Line 342: Line 332:
 
\begin{array}{l}
 
\begin{array}{l}
 
\displaystyle \dot \varphi = - 2M^*_{Pl}{}^2 H'(\varphi ),\\
 
\displaystyle \dot \varphi = - 2M^*_{Pl}{}^2 H'(\varphi ),\\
\displaystyle H'^2(\varphi ) - \frac{3}{{2M^* _{Pl}{}^2 }}H^2 (\varphi ) = - \frac{1}{{2M^* _{Pl}{}^4 }}V(\varphi ).\\
+
\displaystyle H'^2(\varphi ) - \frac{3}{2M^* _{Pl}{}^2 }H^2 (\varphi ) = - \frac{1}{2M^* _{Pl}{}^4 }V(\varphi ).\\
 
\end{array}
 
\end{array}
 
$$</p>
 
$$</p>
Line 351: Line 341:
 
<div id="inf16"></div>
 
<div id="inf16"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 12 ===
 
Express the equations for the scalar field in terms of conformal time.
 
Express the equations for the scalar field in terms of conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 369: Line 359:
 
$$
 
$$
 
\begin{array}{l}
 
\begin{array}{l}
\displaystyle dt = ad\eta;~\frac{d}{{dt}} = \frac{{d\eta }}{{dt}}\frac{1}{{d\eta }} = \frac{1}{a}\frac{1}{{d\eta }},\\
+
\displaystyle dt = ad\eta;~\frac{d}{{dt}} = \frac{d\eta }{dt}\frac{1}{d\eta } = \frac{1}{a}\frac{1}{d\eta },\\
\displaystyle \dot \varphi = \frac{1}{a}\frac{{d\varphi }}{{d\eta }} = \frac{1}{a}\varphi'. \\
+
\displaystyle \dot \varphi = \frac{1}{a}\frac{d\varphi }{d\eta } = \frac{1}{a}\varphi'. \\
 
\end{array}
 
\end{array}
 
$$
 
$$
Line 389: Line 379:
 
<div id="inf17"></div>
 
<div id="inf17"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 13 ===
 
Show that condition $\dot H>0$ cannot be realized for the scalar field with positively defined kinetic energy.
 
Show that condition $\dot H>0$ cannot be realized for the scalar field with positively defined kinetic energy.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 396: Line 386:
 
     <p style="text-align: left;">$$
 
     <p style="text-align: left;">$$
 
\begin{array}{l}
 
\begin{array}{l}
\displaystyle H = \frac{{\dot a}}{a};~\dot H = \frac{{\ddot aa - \dot a^2 }}{{a^2 }} = \frac{{\ddot a}}{a} - H^2,\\
+
\displaystyle H = \frac{\dot a}{a};~\dot H = \frac{\ddot aa - \dot a^2 }{a^2 } = \frac{\ddot a}{a} - H^2,\\
\displaystyle H^2 = \frac{{8\pi G}}{3}\rho ;\;\frac{{\ddot a}}{a} = - \frac{{4\pi G}}{3}(\rho + 3p), \\
+
\displaystyle H^2 = \frac{{8\pi G}}{3}\rho ;\;\frac{\ddot a}{a} = - \frac{4\pi G}{3}(\rho + 3p), \\
 
\displaystyle \dot H > 0 \to p < - \rho. \\
 
\displaystyle \dot H > 0 \to p < - \rho. \\
 
\end{array}
 
\end{array}
Line 409: Line 399:
 
<div id="inf7"></div>
 
<div id="inf7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 14 ===
 
Show that the Klein--Gordon equation could be rewritten in dimensionless form
 
Show that the Klein--Gordon equation could be rewritten in dimensionless form
 
$$
 
$$
Line 422: Line 412:
 
   \dot \varphi  = H\varphi '; \hfill \\
 
   \dot \varphi  = H\varphi '; \hfill \\
 
   \ddot \varphi  = \dot H\varphi ' + H^2 \varphi ''; \hfill \\
 
   \ddot \varphi  = \dot H\varphi ' + H^2 \varphi ''; \hfill \\
   \dot H = \frac{{\ddot a}}
+
   \dot H = \frac{\ddot a}
 
{a} - H^2 ; \hfill \\
 
{a} - H^2 ; \hfill \\
   \left( {\frac{{\ddot a}}
+
   \left( {\frac{\ddot a}
 
{a} - H^2 } \right)\varphi ' + H^2 \varphi '' + 3H^2 \varphi ' + \frac{{dV}}
 
{a} - H^2 } \right)\varphi ' + H^2 \varphi '' + 3H^2 \varphi ' + \frac{{dV}}
 
{{d\varphi }} = 0; \hfill \\
 
{{d\varphi }} = 0; \hfill \\
Line 436: Line 426:
 
<div id="inf7n"></div>
 
<div id="inf7n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 15 ===
 
Represent the equation of motion for the scalar field in the form
 
Represent the equation of motion for the scalar field in the form
 
$$
 
$$
Line 483: Line 473:
 
<div id="inf8"></div>
 
<div id="inf8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 16 ===
 
The term $3H\dot{\varphi}$ in the equation for the scalar field formally acts as friction that damps the inflation evolution. Show that, nonetheless, this term does not lead to dissipative energy production.
 
The term $3H\dot{\varphi}$ in the equation for the scalar field formally acts as friction that damps the inflation evolution. Show that, nonetheless, this term does not lead to dissipative energy production.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 517: Line 507:
 
<div id="inf9"></div>
 
<div id="inf9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 17 ===
 
Obtain the system of equations describing the scalar field dynamics in the expanding Universe
 
Obtain the system of equations describing the scalar field dynamics in the expanding Universe
 
containing radiation and matter in the conformal time.
 
containing radiation and matter in the conformal time.
Line 538: Line 528:
 
<div id="inf10"></div>
 
<div id="inf10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 18 ===
 
Calculate pressure of homogeneous scalar field in the potential $V(\varphi)$ using the obtained above energy density of the field and its equation of motion.
 
Calculate pressure of homogeneous scalar field in the potential $V(\varphi)$ using the obtained above energy density of the field and its equation of motion.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 576: Line 566:
 
<div id="inf11"></div>
 
<div id="inf11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 19 ===
 
What condition should the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ satisfy in order to provide accelerated expansion of the Universe?
 
What condition should the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ satisfy in order to provide accelerated expansion of the Universe?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 589: Line 579:
 
<div id="inf19"></div>
 
<div id="inf19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 20 ===
 
What conditions should the scalar field satisfy in order to provide expansion of the Universe close to the exponential one?
 
What conditions should the scalar field satisfy in order to provide expansion of the Universe close to the exponential one?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 620: Line 610:
 
<div id="inf12"></div>
 
<div id="inf12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 21 ===
 
What considerations led A.Guth to name his theory describing the early Universe dynamics as ''inflation theory''?
 
What considerations led A.Guth to name his theory describing the early Universe dynamics as ''inflation theory''?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 632: Line 622:
 
<div id="inf12_new"></div>
 
<div id="inf12_new"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 22 ===
 
A. Vilenkin in his cosmological bestseller ''Many world in one'' remembers: ''On a Wednesday afternoon, in the winter of 1980, I was sitting in a fully packed Harvard auditorium, listening to the most fascinating talk I had heard in many years. The speaker was Alan Guth, a young physicist from Stanford, and the topic was a new theory for the origin of the universe$\ldots$ The beauty of the idea was that in a single shot inflation explained why the universe is so big, why it is expanding, and why it was so hot at the beginning. A huge expanding universe was produced from almost nothing. All that was needed was a microscopic chunk of repulsive gravity material. Guth admitted he did not know where the initial chunk came from, but that detail could be worked out later. ''It's often said that you cannot get something for nothing.'' he said, ''but the universe may be the ultimate free lunch'' ''. Explain, why can this be.
 
A. Vilenkin in his cosmological bestseller ''Many world in one'' remembers: ''On a Wednesday afternoon, in the winter of 1980, I was sitting in a fully packed Harvard auditorium, listening to the most fascinating talk I had heard in many years. The speaker was Alan Guth, a young physicist from Stanford, and the topic was a new theory for the origin of the universe$\ldots$ The beauty of the idea was that in a single shot inflation explained why the universe is so big, why it is expanding, and why it was so hot at the beginning. A huge expanding universe was produced from almost nothing. All that was needed was a microscopic chunk of repulsive gravity material. Guth admitted he did not know where the initial chunk came from, but that detail could be worked out later. ''It's often said that you cannot get something for nothing.'' he said, ''but the universe may be the ultimate free lunch'' ''. Explain, why can this be.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 646: Line 636:
 
<div id="inf13_new"></div>
 
<div id="inf13_new"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 23 ===
 
Is energy conservation violated during the inflation?
 
Is energy conservation violated during the inflation?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 660: Line 650:
 
<div id="inf18"></div>
 
<div id="inf18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 24 ===
 
The inflation is defined as any epoch for which the scale factor of the Universe has accelerated growth, i.e. $\ddot{a}>0$. Show that the condition is equivalent to the requirement of decreasing of the comoving Hubble radius with time.
 
The inflation is defined as any epoch for which the scale factor of the Universe has accelerated growth, i.e. $\ddot{a}>0$. Show that the condition is equivalent to the requirement of decreasing of the comoving Hubble radius with time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 681: Line 671:
 
<div id="inf20"></div>
 
<div id="inf20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 25 ===
 
Show that in the process of inflation the curvature term in the Friedman equation becomes negligible. Even if that condition was not initially satisfied, the inflation quickly realizes it.
 
Show that in the process of inflation the curvature term in the Friedman equation becomes negligible. Even if that condition was not initially satisfied, the inflation quickly realizes it.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 693: Line 683:
 
<div id="inf20_1"></div>
 
<div id="inf20_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 26 ===
 
It is sometimes said, that the choice of $k = 0$ is motivated by observations: the density of curvature is close to zero. Is this claim correct?
 
It is sometimes said, that the choice of $k = 0$ is motivated by observations: the density of curvature is close to zero. Is this claim correct?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 713: Line 703:
 
<div id="inf21"></div>
 
<div id="inf21"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 27 ===
 
Obtain the evolution equations for the scalar field in expanding Universe in the inflationary slow-roll regime.
 
Obtain the evolution equations for the scalar field in expanding Universe in the inflationary slow-roll regime.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 742: Line 732:
 
<div id="inf22"></div>
 
<div id="inf22"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 28 ===
 
Find the time dependence of scale factor in the slow--roll regime for the case $V(\varphi)={m^2 \varphi^2 / 2}$.
 
Find the time dependence of scale factor in the slow--roll regime for the case $V(\varphi)={m^2 \varphi^2 / 2}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 767: Line 757:
 
<div id="inf23"></div>
 
<div id="inf23"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 29 ===
 
Find the dependence of scale factor on the scalar field in the slow-roll regime.
 
Find the dependence of scale factor on the scalar field in the slow-roll regime.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 788: Line 778:
 
<div id="inf25"></div>
 
<div id="inf25"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 30 ===
 
Show that the conditions for realization of the slow--roll limit can be presented in the form:
 
Show that the conditions for realization of the slow--roll limit can be presented in the form:
 
     \[\varepsilon(\varphi)\equiv\frac{M^{*2}_{Pl}}{2}\left(\frac{V^\prime}{V}\right)^2\ll1;
 
     \[\varepsilon(\varphi)\equiv\frac{M^{*2}_{Pl}}{2}\left(\frac{V^\prime}{V}\right)^2\ll1;
Line 803: Line 793:
 
<div id="inf26"></div>
 
<div id="inf26"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 31 ===
 
Show that the condition $\varepsilon\ll1$ for the realization of the slow--roll limit obtained in the previous problem is also sufficient condition for the inflation.
 
Show that the condition $\varepsilon\ll1$ for the realization of the slow--roll limit obtained in the previous problem is also sufficient condition for the inflation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 832: Line 822:
 
<div id="inf27"></div>
 
<div id="inf27"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 32 ===
 
Find the slow--roll condition for power law potentials.
 
Find the slow--roll condition for power law potentials.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 876: Line 866:
 
<div id="inf28"></div>
 
<div id="inf28"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 33 ===
 
Show that the condition $\varepsilon \ll\eta$ is satisfied in the vicinity of inflection point of the inflationary potential $V(\varphi)$.
 
Show that the condition $\varepsilon \ll\eta$ is satisfied in the vicinity of inflection point of the inflationary potential $V(\varphi)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 903: Line 893:
 
<div id="inf29"></div>
 
<div id="inf29"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 34 ===
 
Show that the inflation parameter $\varepsilon$ can be expressed through the parameter $w$ in the state equation for the scalar field.
 
Show that the inflation parameter $\varepsilon$ can be expressed through the parameter $w$ in the state equation for the scalar field.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 928: Line 918:
 
<div id="inf30"></div>
 
<div id="inf30"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 35 ===
 
Show that the second Friedman equation \[\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3p)\] can be presented in the form \[\frac{\ddot{a}}{a}=H^2(1-\varepsilon).\]
 
Show that the second Friedman equation \[\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3p)\] can be presented in the form \[\frac{\ddot{a}}{a}=H^2(1-\varepsilon).\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 956: Line 946:
 
<div id="inf31"></div>
 
<div id="inf31"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 36 ===
 
Show that in the slow--roll regime $\varepsilon_H\rightarrow\varepsilon$ and
 
Show that in the slow--roll regime $\varepsilon_H\rightarrow\varepsilon$ and
 
$\eta_H\rightarrow\eta-\varepsilon$.
 
$\eta_H\rightarrow\eta-\varepsilon$.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
Line 971: Line 961:
 
<div id="inf32"></div>
 
<div id="inf32"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 37 ===
 
Show that the inflation parameters $\varepsilon_H,\ \eta_H$ can be presented in the following symmetric form \[\varepsilon_H=-\frac{d\ln H}{d\ln a};\ \eta_H=-\frac{d\ln H'}{d\ln a}.\]
 
Show that the inflation parameters $\varepsilon_H,\ \eta_H$ can be presented in the following symmetric form \[\varepsilon_H=-\frac{d\ln H}{d\ln a};\ \eta_H=-\frac{d\ln H'}{d\ln a}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,002: Line 992:
 
<div id="inf33"></div>
 
<div id="inf33"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 38 ===
 
Prove that the definition of inflation as the regime for which $\ddot a>0$  is equivalent to condition $\varepsilon_H<1$.
 
Prove that the definition of inflation as the regime for which $\ddot a>0$  is equivalent to condition $\varepsilon_H<1$.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
Line 1,016: Line 1,006:
 
<div id="inf34"></div>
 
<div id="inf34"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 39 ===
 
Show that inflation appears every time when the scalar field's value exceeds the Planck mass.
 
Show that inflation appears every time when the scalar field's value exceeds the Planck mass.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
Line 1,030: Line 1,020:
 
<div id="inf51"></div>
 
<div id="inf51"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 40 ===
 
Find the energy momentum tensor for homogeneous scalar field in the slow--roll regime.
 
Find the energy momentum tensor for homogeneous scalar field in the slow--roll regime.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,052: Line 1,042:
 
<div id="inf37"></div>
 
<div id="inf37"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 41 ===
 
Show that in the inflation epoch the relative density $\Omega$ exponentially tends to unity.
 
Show that in the inflation epoch the relative density $\Omega$ exponentially tends to unity.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,071: Line 1,061:
 
<div id="inf38"></div>
 
<div id="inf38"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 42 ===
 
Estimate the temperature of the Universe at the end of inflation.
 
Estimate the temperature of the Universe at the end of inflation.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
Line 1,085: Line 1,075:
 
<div id="inf39"></div>
 
<div id="inf39"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 43 ===
 
Estimate the size of the Universe at the end of inflation.
 
Estimate the size of the Universe at the end of inflation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Let $R_0$ is current size of Universe, and $R_{eq}$ is its size at the moment $t_{eq}$ of equality between energy densities of matter and radiation ($t_{eq} \simeq 50\,000~\mbox{\it years}$). Then
+
     <p style="text-align: left;">Let $R_0$ is current size of Universe, and $R_{eq}$ is its size at the moment $t_{eq}$ of equality between energy densities of matter and radiation ($t_{eq} \simeq 50\,000~\mbox{ years}$). Then
 
$$
 
$$
 
R_{eq} \approx R_0 \left( {\frac{{t_0 }}{{t_{eq} }}} \right)^{ - 2/3}.
 
R_{eq} \approx R_0 \left( {\frac{{t_0 }}{{t_{eq} }}} \right)^{ - 2/3}.
Line 1,110: Line 1,100:
 
<div id="inf40"></div>
 
<div id="inf40"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 44 ===
 
Find the number $N_e$ of $e$-foldings of the scale factor in the inflation epoch.
 
Find the number $N_e$ of $e$-foldings of the scale factor in the inflation epoch.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,143: Line 1,133:
 
<div id="inf42"></div>
 
<div id="inf42"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 45 ===
 
Find the number $N_e$ of $e$-foldings of the scale factor for the inflation process near the inflection point.
 
Find the number $N_e$ of $e$-foldings of the scale factor for the inflation process near the inflection point.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,159: Line 1,149:
 
<div id="inf43"></div>
 
<div id="inf43"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 46 ===
 
Show that inflation transforms the unstable fixed point $x=0$ for the quantity \[x\equiv\frac{\Omega-1}{\Omega}\] into the stable one, therefore solving the problem of the flatness of the Universe.
 
Show that inflation transforms the unstable fixed point $x=0$ for the quantity \[x\equiv\frac{\Omega-1}{\Omega}\] into the stable one, therefore solving the problem of the flatness of the Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,201: Line 1,191:
 
<div id="inf24"></div>
 
<div id="inf24"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 47 ===
 
Find the particle horizon in the inflationary regime, assuming $H\approx const$.
 
Find the particle horizon in the inflationary regime, assuming $H\approx const$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,220: Line 1,210:
 
<div id="inf44"></div>
 
<div id="inf44"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 48 ===
 
Find the solution of the horizon problem in the framework of inflation theory.
 
Find the solution of the horizon problem in the framework of inflation theory.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,227: Line 1,217:
 
     <p style="text-align: left;">Assume that the inflation started at $t_i = 10^{ - 38}~\mbox{sec}$ and stopped at $t_f = 10^{ - 36}~\mbox{sec}$. Before start of the inflation the universe was dominated by radiation and the particle horizon at that time was equal to
 
     <p style="text-align: left;">Assume that the inflation started at $t_i = 10^{ - 38}~\mbox{sec}$ and stopped at $t_f = 10^{ - 36}~\mbox{sec}$. Before start of the inflation the universe was dominated by radiation and the particle horizon at that time was equal to
 
$$
 
$$
L_p = 2t_i = 2 \cdot 3 \cdot 10^{10} \mbox{\it ñì}\,c^{ - 1} \cdot 10^{ - 38} c = 6 \cdot 10^{ - 28}\mbox{\it cm}.
+
L_p = 2t_i = 2 \cdot 3 \cdot 10^{10} \mbox{cm}\,c^{ - 1} \cdot 10^{ - 38} c = 6 \cdot 10^{ - 28}\mbox{ cm}.
 
$$
 
$$
 
It is the maximum size of the region where the thermal equilibrium could be established before the start of inflation. During the inflation this region increased in $e^N $ times, and then endured further expansion in radiation-dominated and matter-dominated epochs. At present this region has the size
 
It is the maximum size of the region where the thermal equilibrium could be established before the start of inflation. During the inflation this region increased in $e^N $ times, and then endured further expansion in radiation-dominated and matter-dominated epochs. At present this region has the size
 
$$
 
$$
l_0 \approx L_p (t_i )e^N \left( {\frac{{t_{eq} }}{{t_f }}} \right)^{1/2} \left( {\frac{{t_0 }}{{t_{eq} }}} \right)^{1/2}.
+
l_0 \approx L_p (t_i )e^N \left( {\frac{t_{eq} }{t_f }} \right)^{1/2} \left( {\frac{t_0 }{t_{eq}}} \right)^{1/2}.
 
$$
 
$$
 
Choosing value $N \approx 100$ (sufficiently ''modest'' estimate) and using the above cited values $t_{eq}$
 
Choosing value $N \approx 100$ (sufficiently ''modest'' estimate) and using the above cited values $t_{eq}$
 
and $t_0$, one obtins
 
and $t_0$, one obtins
 
$$
 
$$
l_0 \approx 10^{40} \mbox{\it ñì}
+
l_0 \approx 10^{40} \mbox{cm}
 
$$
 
$$
This value considerable exceeds the size of presently observed Universe $l \approx 10^{28} \mbox{\it cm}$ and therefore the horizon problem is solved.</p>
+
This value considerable exceeds the size of presently observed Universe $l \approx 10^{28} \mbox{ cm}$ and therefore the horizon problem is solved.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,247: Line 1,237:
 
<div id="inf56"></div>
 
<div id="inf56"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 49 ===
 
Did entropy change during the inflation period? If yes, then estimate what its change was.
 
Did entropy change during the inflation period? If yes, then estimate what its change was.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
Line 1,261: Line 1,251:
 
<div id="inf57"></div>
 
<div id="inf57"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 50 ===
 
Does the inflation theory explain the modern value of entropy?
 
Does the inflation theory explain the modern value of entropy?
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
Line 1,275: Line 1,265:
 
<div id="inf45"></div>
 
<div id="inf45"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 51 ===
 
Find the solution of the monopole problem in frame of inflation theory.
 
Find the solution of the monopole problem in frame of inflation theory.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>

Revision as of 14:43, 10 June 2013


Inflation hasn't won the race,
But so far it's the only horse
Andrei Linde.



Scalar Field In Cosmology

Problem 1

A scalar field $\varphi(\vec r,t)$ in a potential $V(\varphi)$ is described by Lagrangian \[L=\frac12\left(\dot\varphi^2-\nabla\varphi\cdot\nabla\varphi\right)-V(\varphi)\] Obtain the equation of motion (evolution) from the least action principle for that field.


Problem 2

Using the action for free scalar field minimally coupled to gravitation \[S_\varphi=\int d^4x\sqrt{-g}\left(\frac12 g^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi\right)\] obtain action for this field in the FRW metric.


Problem 3

Using the action obtained in the previous problem, obtain evolution equation for the scalar field in the expanding Universe.


Problem 4

Calculate the density and pressure of homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ in the FRW metric.


Problem 5

Starting from the scalar field's action in the form \[ S = \int {d^4 x\sqrt { - g} \left[ {{1 \over 2}(\nabla \varphi )^2 - V(\varphi )} \right]} \] obtain the equation of motion for this field for the case of FRW metric.


Problem 6

Construct the Lagrange function describing the dynamics of the Universe filled with a scalar field in potential $V(\varphi)$. Using the obtained Lagrangian, obtain the Friedman equations and the Klein--Gordon equation.


Problem 7

Obtain the equation of motion for a homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ starting from the conservation equation \[\dot\rho+3\frac{\dot a}{a}(\rho+p)=0.\]


Problem 8

Obtain the equation of motion for the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ using the analogy with Newtonian dynamics.


Problem 9

Express $V(\varphi)$ and $\varphi$ through the Hubble parameter $H$ and its derivative $\dot{H}$ for the Universe filled with quintessence.


Problem 10

Show that Friedman equations for the scalar field $\varphi(t)$ in potential $V(\varphi)$ can be presented in the form \[H^2=\frac{8\pi G}{3}\left(\frac12 \dot\varphi^2+V(\varphi)\right),\] \[\dot H=-4\pi G\dot\varphi^2.\]


Problem 11

Provided that the scalar field $\varphi(t)$ is a single--valued function of time, transform the second order equation for the scalar field into a system of first order equations.


Problem 12

Express the equations for the scalar field in terms of conformal time.


Problem 13

Show that condition $\dot H>0$ cannot be realized for the scalar field with positively defined kinetic energy.


Problem 14

Show that the Klein--Gordon equation could be rewritten in dimensionless form $$ \varphi '' + \left( {2 - q} \right)\varphi ' = \chi ;\quad \chi \equiv - \frac{1}{H^2 }\frac{dV}{d\varphi }, $$ where prime denotes the derivative by $\ln a$, and $q = - {{a\ddot a} / {\dot a^2 }}$ is the deceleration parameter.


Problem 15

Represent the equation of motion for the scalar field in the form $$ \pm \frac{V_{,\varphi}}{V} = \sqrt {\frac{3(1 + w)}{\Omega _\varphi(a)}} \left[ 1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right], $$ where $$ x_{\varphi}=\frac{1+w_{\varphi}}{1-w_{\varphi}}, ~w_{\varphi}=\frac{\dot{\varphi}^2+2V(\varphi)}{\dot{\varphi}^2-2V(\varphi)}, $$ in the system of units such that $8\pi G=1.$


Problem 16

The term $3H\dot{\varphi}$ in the equation for the scalar field formally acts as friction that damps the inflation evolution. Show that, nonetheless, this term does not lead to dissipative energy production.


Problem 17

Obtain the system of equations describing the scalar field dynamics in the expanding Universe containing radiation and matter in the conformal time.


Problem 18

Calculate pressure of homogeneous scalar field in the potential $V(\varphi)$ using the obtained above energy density of the field and its equation of motion.


Problem 19

What condition should the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ satisfy in order to provide accelerated expansion of the Universe?


Problem 20

What conditions should the scalar field satisfy in order to provide expansion of the Universe close to the exponential one?


Inflationary Introduction

Problem 21

What considerations led A.Guth to name his theory describing the early Universe dynamics as inflation theory?


Problem 22

A. Vilenkin in his cosmological bestseller Many world in one remembers: On a Wednesday afternoon, in the winter of 1980, I was sitting in a fully packed Harvard auditorium, listening to the most fascinating talk I had heard in many years. The speaker was Alan Guth, a young physicist from Stanford, and the topic was a new theory for the origin of the universe$\ldots$ The beauty of the idea was that in a single shot inflation explained why the universe is so big, why it is expanding, and why it was so hot at the beginning. A huge expanding universe was produced from almost nothing. All that was needed was a microscopic chunk of repulsive gravity material. Guth admitted he did not know where the initial chunk came from, but that detail could be worked out later. It's often said that you cannot get something for nothing. he said, but the universe may be the ultimate free lunch . Explain, why can this be.


Problem 23

Is energy conservation violated during the inflation?


Problem 24

The inflation is defined as any epoch for which the scale factor of the Universe has accelerated growth, i.e. $\ddot{a}>0$. Show that the condition is equivalent to the requirement of decreasing of the comoving Hubble radius with time.


Problem 25

Show that in the process of inflation the curvature term in the Friedman equation becomes negligible. Even if that condition was not initially satisfied, the inflation quickly realizes it.


Problem 26

It is sometimes said, that the choice of $k = 0$ is motivated by observations: the density of curvature is close to zero. Is this claim correct?



Inflation in the Slow-Roll Regime

Problem 27

Obtain the evolution equations for the scalar field in expanding Universe in the inflationary slow-roll regime.


Problem 28

Find the time dependence of scale factor in the slow--roll regime for the case $V(\varphi)={m^2 \varphi^2 / 2}$.


Problem 29

Find the dependence of scale factor on the scalar field in the slow-roll regime.


Problem 30

Show that the conditions for realization of the slow--roll limit can be presented in the form:

   \[\varepsilon(\varphi)\equiv\frac{M^{*2}_{Pl}}{2}\left(\frac{V^\prime}{V}\right)^2\ll1;
    \ |\eta(\varphi)|\equiv\left|M^{*2}_{Pl}\frac{V^{\prime\prime}}{V}\right|\ll1;
    \ M^*_{Pl}\equiv(8\pi G)^{-1/2}.\]


Problem 31

Show that the condition $\varepsilon\ll1$ for the realization of the slow--roll limit obtained in the previous problem is also sufficient condition for the inflation.


Problem 32

Find the slow--roll condition for power law potentials.


Problem 33

Show that the condition $\varepsilon \ll\eta$ is satisfied in the vicinity of inflection point of the inflationary potential $V(\varphi)$.


Problem 34

Show that the inflation parameter $\varepsilon$ can be expressed through the parameter $w$ in the state equation for the scalar field.



Problem 35

Show that the second Friedman equation \[\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3p)\] can be presented in the form \[\frac{\ddot{a}}{a}=H^2(1-\varepsilon).\]



Problem 36

Show that in the slow--roll regime $\varepsilon_H\rightarrow\varepsilon$ and $\eta_H\rightarrow\eta-\varepsilon$.



Problem 37

Show that the inflation parameters $\varepsilon_H,\ \eta_H$ can be presented in the following symmetric form \[\varepsilon_H=-\frac{d\ln H}{d\ln a};\ \eta_H=-\frac{d\ln H'}{d\ln a}.\]



Problem 38

Prove that the definition of inflation as the regime for which $\ddot a>0$ is equivalent to condition $\varepsilon_H<1$.



Problem 39

Show that inflation appears every time when the scalar field's value exceeds the Planck mass.



Problem 40

Find the energy momentum tensor for homogeneous scalar field in the slow--roll regime.


Solution of the Hot Big Bang Theory Problems

Problem 41

Show that in the inflation epoch the relative density $\Omega$ exponentially tends to unity.



Problem 42

Estimate the temperature of the Universe at the end of inflation.



Problem 43

Estimate the size of the Universe at the end of inflation.



Problem 44

Find the number $N_e$ of $e$-foldings of the scale factor in the inflation epoch.



Problem 45

Find the number $N_e$ of $e$-foldings of the scale factor for the inflation process near the inflection point.



Problem 46

Show that inflation transforms the unstable fixed point $x=0$ for the quantity \[x\equiv\frac{\Omega-1}{\Omega}\] into the stable one, therefore solving the problem of the flatness of the Universe.



Problem 47

Find the particle horizon in the inflationary regime, assuming $H\approx const$.



Problem 48

Find the solution of the horizon problem in the framework of inflation theory.



Problem 49

Did entropy change during the inflation period? If yes, then estimate what its change was.



Problem 50

Does the inflation theory explain the modern value of entropy?



Problem 51

Find the solution of the monopole problem in frame of inflation theory.