Difference between revisions of "Dark Matter Detection"

From Universe in Problems
Jump to: navigation, search
(Problem 9)
(Problem 11)
 
(7 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Using \( \rho _0 \approx 0.3\mbox{\it GeV/cm}^3 \) under assumption $m_\chi\approx 100\mbox{\it
+
     <p style="text-align: left;">Using \( \rho _0 \approx 0.3\mbox{GeV/cm}^3 \) under assumption $m_\chi\approx 100\mbox{GeV}$, one obtains for the WIMP number density the following expression \( n = \rho _0 /m_\chi
GeV}$, one obtains for the WIMP number density the following expression \( n = \rho _0 /m_\chi
+
\approx 3 \times 10^{ - 3} \mbox{cm}^{ - 3} \). For \(
\approx 3 \times 10^{ - 3} \mbox{\it cm}^{ - 3} \). For \(
+
\left\langle v \right\rangle  \simeq 250\mbox{km/s} \) the flow equals \(J = n\left\langle v \right\rangle  \sim 10^5 \mbox{cm}^{ - 2} \mbox{s}^{ - 1}\)</p>
\left\langle v \right\rangle  \simeq 250\mbox{\it km/s} \) the flow equals \(J = n\left\langle v \right\rangle  \sim 10^5 \mbox{\it cm}^{ - 2} \mbox{\it s}^{ - 1}\)</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 33: Line 32:
 
2) Motion of the recoil nucleus in the lattice can induce creation of the vibrational phonons.<br/>
 
2) Motion of the recoil nucleus in the lattice can induce creation of the vibrational phonons.<br/>
 
3) The energy converted into the phonons can eventually thermalize and lead to minor increase in the detector temperature.
 
3) The energy converted into the phonons can eventually thermalize and lead to minor increase in the detector temperature.
\end{description}
+
<br/><br/>
 
Therefore the recoil nucleus can induce three kinds of signals:<br/>
 
Therefore the recoil nucleus can induce three kinds of signals:<br/>
 
1) ionization (charge);<br/>
 
1) ionization (charge);<br/>
Line 45: Line 44:
 
<div id="11_20"></div>
 
<div id="11_20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 3 ===
 
=== Problem 3 ===
 
Show that WIMPs of mass $\sim100GeV$ being elastically scattered on Xenon nuclei with mass $\sim130GeV$ lead to energy recoil $\le40keV$.
 
Show that WIMPs of mass $\sim100GeV$ being elastically scattered on Xenon nuclei with mass $\sim130GeV$ lead to energy recoil $\le40keV$.
Line 71: Line 71:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Consider the recoil energy as a function of the nucleus mass at given WIMP mass (see problem \ref{11_20}), and show that it has maximum at $m_N  = m_\chi.$</p>
+
     <p style="text-align: left;">Consider the recoil energy as a function of the nucleus mass at given WIMP mass (see [[#11_20|problem]] ), and show that it has maximum at $m_N  = m_\chi.$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 79: Line 79:
 
<div id="DM25"></div>
 
<div id="DM25"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 5 ===
 
=== Problem 5 ===
 
Determine the minimum velocity of WIMPs that can transmit energy $Q$ to a nucleus with mass $m_N$.
 
Determine the minimum velocity of WIMPs that can transmit energy $Q$ to a nucleus with mass $m_N$.
Line 93: Line 94:
 
and thus
 
and thus
 
\[
 
\[
v_{\min }  = \frac{{\sqrt {2m_N Q} }}{{2m_r }}.
+
v_{\min }  = \frac{\sqrt {2m_N Q}}{2m_r}.
 
\]</p>
 
\]</p>
 
   </div>
 
   </div>
Line 102: Line 103:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 6 ===
 
=== Problem 6 ===
 
Estimate the count rate for the detector registering elastic events of WIMPs.
 
Estimate the count rate for the detector registering elastic events of WIMPs.
Line 111: Line 113:
 
\simeq {\rm O}\left( {10^{ - 2} } \right)$ is the weak interaction constant. Therefore $\sigma \approx 10^{ - 9} \mbox{GeV}^{ -
 
\simeq {\rm O}\left( {10^{ - 2} } \right)$ is the weak interaction constant. Therefore $\sigma \approx 10^{ - 9} \mbox{GeV}^{ -
 
2} \approx 1\mbox{pb}$. (Recall that $1\mbox{GeV}^{ - 1}
 
2} \approx 1\mbox{pb}$. (Recall that $1\mbox{GeV}^{ - 1}
\approx 2 \times 10^{ - 14} \mbox{\it cm}$.)
+
\approx 2 \times 10^{ - 14} \mbox{cm}$.)
 
<br/>
 
<br/>
 
Note that the experimenters prefer deal with the
 
Note that the experimenters prefer deal with the
 
WIMP-nucleon cross-section rather than WIMP-nucleus one. The former is of order of
 
WIMP-nucleon cross-section rather than WIMP-nucleus one. The former is of order of
$\sigma_{\chi n} \approx 10^{ - 8} \mbox{pb}.$  The very rough estimate of the detector counting rate gives $R \sim J\sigma /m_N  \approx 10 \mbox{events}\,\mbox{\it kg}^{ - 1} \mbox{year}^{ - 1} $
+
$\sigma_{\chi n} \approx 10^{ - 8} \mbox{pb}.$  The very rough estimate of the detector counting rate gives $R \sim J\sigma /m_N  \approx 10 \mbox{events}\,\mbox{kg}^{ - 1} \mbox{year}^{ - 1} $
 
(for a target with nuclei containing about $100$ nucleons each, i.e. $m_N
 
(for a target with nuclei containing about $100$ nucleons each, i.e. $m_N
 
\sim 100\mbox{GeV} = 1.77 \times 10^{ - 27} \mbox{kg}$ ). It means that every day several WIMP (precise number depends on the detector material) will hit the atomic nuclei which the detector is composed of. Of course the above given speculations are nothing ore than an estimate. Accurate calculations should take into account the interaction of WIMP with quarks and gluons, then its consequent translation into the interaction with nucleons and at last to the interaction with the nuclei.</p>
 
\sim 100\mbox{GeV} = 1.77 \times 10^{ - 27} \mbox{kg}$ ). It means that every day several WIMP (precise number depends on the detector material) will hit the atomic nuclei which the detector is composed of. Of course the above given speculations are nothing ore than an estimate. Accurate calculations should take into account the interaction of WIMP with quarks and gluons, then its consequent translation into the interaction with nucleons and at last to the interaction with the nuclei.</p>
Line 140: Line 142:
 
$F(q)$
 
$F(q)$
 
\[
 
\[
d\sigma  = \frac{1}{{v^2 }}\frac{{\sigma _0 }}{{4m_r^2 }}F^2
+
d\sigma  = \frac{1}{v^2}\frac{\sigma _0}{4m_r^2}F^2
 
(q)dq^2,
 
(q)dq^2,
 
\]
 
\]
where $\sigma _0 $ is the total cross-section, \( m_r  = m_\chi  m_N /(m_\chi
+
where $\sigma _0 $ is the total cross-section, \( m_r  = m_\chi  m_N /(m_\chi+ m_N ) \) is the reduced mass, $q = \sqrt {2m_N Q}$ is the transmitted momentum. Thus the differential counting rate per unit mass of the detector can be presented in the following form:
+ m_N ) \) is the reduced mass, $q = \sqrt {2m_N Q}$ is the transmitted momentum. Thus the differential counting rate per unit mass of the detector can be presented in the following form:
+
 
$$
 
$$
 
\frac{dR}{dQ} = \frac{\rho _0 }{m_\chi  m_N }\int vf_1 (v)d\sigma dv
 
\frac{dR}{dQ} = \frac{\rho _0 }{m_\chi  m_N }\int vf_1 (v)d\sigma dv
Line 167: Line 168:
 
\[
 
\[
 
\begin{array}{l}
 
\begin{array}{l}
  \left\langle v \right\rangle _{(1)}  = \int_0^\infty  {vf_1 (v)dv = {\frac{{\sqrt 2 }}{\pi }} } v_0 ; \\
+
  \left\langle v \right\rangle _{(1)}  = \int_0^\infty  {vf_1 (v)dv = \frac{\sqrt 2}{\pi } } v_0 ; \\
 
  \left\langle {v^2 } \right\rangle _{(1)}^{1/2}  = \left( {\int_0^\infty  {v^2 f_1 (v)dv} } \right)^{1/2}  = \sqrt {\frac{3}{2}}
 
  \left\langle {v^2 } \right\rangle _{(1)}^{1/2}  = \left( {\int_0^\infty  {v^2 f_1 (v)dv} } \right)^{1/2}  = \sqrt {\frac{3}{2}}
 
  v_0.
 
  v_0.
Line 184: Line 185:
 
Finally one obtains for total events number of the elastic scattering registered by the detector unit mass per unit time the following
 
Finally one obtains for total events number of the elastic scattering registered by the detector unit mass per unit time the following
 
\[
 
\[
R = \int_{Q_{th} }^\infty  {\left( {\frac{{dR}}{{dQ}}} \right)dQ},
+
R = \int_{Q_{th} }^\infty  {\left( \frac{dR}{dQ} \right)dQ},
 
\]
 
\]
 
where $Q_{th} $ is the threshold value of the detector energy.
 
where $Q_{th} $ is the threshold value of the detector energy.
Line 197: Line 198:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 8 ===
 
=== Problem 8 ===
 
Reconstruct the one-dimensional WIMPs' velocities distribution $f_1(v)$  (see the previous problem) basing on the given count rate of the elastic events.
 
Reconstruct the one-dimensional WIMPs' velocities distribution $f_1(v)$  (see the previous problem) basing on the given count rate of the elastic events.
Line 241: Line 243:
 
The wavelength of the WIMP is
 
The wavelength of the WIMP is
 
\[
 
\[
\lambda  = \frac{h}{p} = 2\pi \frac{\hbar }{{m_p c}}\frac{m_p}{m_\chi}\frac{c}{v} \simeq 2\pi  \cdot 2 \cdot 10^{ - 14}
+
\lambda  = \frac{h}{p} = 2\pi \frac{\hbar }{m_p c}\frac{m_p}{m_\chi}\frac{c}{v} \simeq 2\pi  \cdot 2 \cdot 10^{ - 14}
 
\mbox{cm} \cdot 10^{ - 2}  \cdot 10^3  \simeq 1.3 \cdot 10^{ -12} \mbox{ cm}
 
\mbox{cm} \cdot 10^{ - 2}  \cdot 10^3  \simeq 1.3 \cdot 10^{ -12} \mbox{ cm}
 
\]
 
\]
Line 252: Line 254:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 11 ===
 
=== Problem 11 ===
 
Find the total WIMP-nucleus cross-section determining the elastic events' count rate.
 
Find the total WIMP-nucleus cross-section determining the elastic events' count rate.
Line 270: Line 273:
 
f_{p,n}  = \sum\limits_{q = u,d,s} {f_{T_q }^{(p,n)} a_q
 
f_{p,n}  = \sum\limits_{q = u,d,s} {f_{T_q }^{(p,n)} a_q
 
\frac{m_{p,n}}{m_q} + \frac{2}{27}f_{TG}^{(p,n)}
 
\frac{m_{p,n}}{m_q} + \frac{2}{27}f_{TG}^{(p,n)}
\sum\limits_{q = c,b,t} {a_q \frac{{m_{p,n} }}{{m_q }}} },
+
\sum\limits_{q = c,b,t} {a_q \frac{m_{p,n}}{m_q}} },
 
\]
 
\]
 
where $a_q $ are the WIMP-quark coupling constants and the quantity $f_{T_q
 
where $a_q $ are the WIMP-quark coupling constants and the quantity $f_{T_q
Line 281: Line 284:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 12 ===
 
=== Problem 12 ===
 
How will the number of counts for the elastic events detector be affected by transition to heavier target nuclei at fixed detector mass?
 
How will the number of counts for the elastic events detector be affected by transition to heavier target nuclei at fixed detector mass?

Latest revision as of 10:43, 4 October 2012




Problem 1

Estimate the WIMPs' flow onto the Earth's surface.


Problem 2

What are the main processes due to which the WIMPs can be detected?


Problem 3

Show that WIMPs of mass $\sim100GeV$ being elastically scattered on Xenon nuclei with mass $\sim130GeV$ lead to energy recoil $\le40keV$.


Problem 4

Show that the WIMPs' elastic scattering experiments will be most efficient if the target nuclei's mass is comparable with the WIMPs' mass.


Problem 5

Determine the minimum velocity of WIMPs that can transmit energy $Q$ to a nucleus with mass $m_N$.


Problem 6

Estimate the count rate for the detector registering elastic events of WIMPs.


Problem 7

Obtain the expression for the count rate of the detector registering elastic events of WIMPs.


Problem 8

Reconstruct the one-dimensional WIMPs' velocities distribution $f_1(v)$ (see the previous problem) basing on the given count rate of the elastic events.


Problem 9

Construct a model-independent scheme for WIMPs' mass determination using the results of WIMPs' elastic scattering events detection for two or more sets of experimental data with detectors of different composition.


Problem 10

Show that if a WIMP has the mass of the order $100GeV$ and velocity of the order of $300km/s$, then it coherently interacts with nucleons of a detector nuclei.


Problem 11

Find the total WIMP-nucleus cross-section determining the elastic events' count rate.


Problem 12

How will the number of counts for the elastic events detector be affected by transition to heavier target nuclei at fixed detector mass?


Problem 13

Show that if the WIMPs' mass is of the order of $100GeV$ then the elastic spin-independent cross-section for WIMPs on a nucleus with $A\sim100$ is eight orders of magnitude larger then the corresponding cross-section on a nucleon


Problem 14

Estimate the annual modulations' amplitude of the WIMPs elastic scattering cross-section.


Problem 15

Estimate the diurnal modulations' amplitude of the WIMPs elastic scattering cross-section.