Difference between revisions of "Dark Matter Detection"

From Universe in Problems
Jump to: navigation, search
(Problem 4)
(Problem 11)
 
(4 intermediate revisions by the same user not shown)
Line 94: Line 94:
 
and thus
 
and thus
 
\[
 
\[
v_{\min }  = \frac{{\sqrt {2m_N Q} }}{{2m_r }}.
+
v_{\min }  = \frac{\sqrt {2m_N Q}}{2m_r}.
 
\]</p>
 
\]</p>
 
   </div>
 
   </div>
Line 103: Line 103:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 6 ===
 
=== Problem 6 ===
 
Estimate the count rate for the detector registering elastic events of WIMPs.
 
Estimate the count rate for the detector registering elastic events of WIMPs.
Line 141: Line 142:
 
$F(q)$
 
$F(q)$
 
\[
 
\[
d\sigma  = \frac{1}{{v^2 }}\frac{{\sigma _0 }}{{4m_r^2 }}F^2
+
d\sigma  = \frac{1}{v^2}\frac{\sigma _0}{4m_r^2}F^2
 
(q)dq^2,
 
(q)dq^2,
 
\]
 
\]
where $\sigma _0 $ is the total cross-section, \( m_r  = m_\chi  m_N /(m_\chi
+
where $\sigma _0 $ is the total cross-section, \( m_r  = m_\chi  m_N /(m_\chi+ m_N ) \) is the reduced mass, $q = \sqrt {2m_N Q}$ is the transmitted momentum. Thus the differential counting rate per unit mass of the detector can be presented in the following form:
+ m_N ) \) is the reduced mass, $q = \sqrt {2m_N Q}$ is the transmitted momentum. Thus the differential counting rate per unit mass of the detector can be presented in the following form:
+
 
$$
 
$$
 
\frac{dR}{dQ} = \frac{\rho _0 }{m_\chi  m_N }\int vf_1 (v)d\sigma dv
 
\frac{dR}{dQ} = \frac{\rho _0 }{m_\chi  m_N }\int vf_1 (v)d\sigma dv
Line 168: Line 168:
 
\[
 
\[
 
\begin{array}{l}
 
\begin{array}{l}
  \left\langle v \right\rangle _{(1)}  = \int_0^\infty  {vf_1 (v)dv = {\frac{{\sqrt 2 }}{\pi }} } v_0 ; \\
+
  \left\langle v \right\rangle _{(1)}  = \int_0^\infty  {vf_1 (v)dv = \frac{\sqrt 2}{\pi } } v_0 ; \\
 
  \left\langle {v^2 } \right\rangle _{(1)}^{1/2}  = \left( {\int_0^\infty  {v^2 f_1 (v)dv} } \right)^{1/2}  = \sqrt {\frac{3}{2}}
 
  \left\langle {v^2 } \right\rangle _{(1)}^{1/2}  = \left( {\int_0^\infty  {v^2 f_1 (v)dv} } \right)^{1/2}  = \sqrt {\frac{3}{2}}
 
  v_0.
 
  v_0.
Line 185: Line 185:
 
Finally one obtains for total events number of the elastic scattering registered by the detector unit mass per unit time the following
 
Finally one obtains for total events number of the elastic scattering registered by the detector unit mass per unit time the following
 
\[
 
\[
R = \int_{Q_{th} }^\infty  {\left( {\frac{{dR}}{{dQ}}} \right)dQ},
+
R = \int_{Q_{th} }^\infty  {\left( \frac{dR}{dQ} \right)dQ},
 
\]
 
\]
 
where $Q_{th} $ is the threshold value of the detector energy.
 
where $Q_{th} $ is the threshold value of the detector energy.
Line 198: Line 198:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 8 ===
 
=== Problem 8 ===
 
Reconstruct the one-dimensional WIMPs' velocities distribution $f_1(v)$  (see the previous problem) basing on the given count rate of the elastic events.
 
Reconstruct the one-dimensional WIMPs' velocities distribution $f_1(v)$  (see the previous problem) basing on the given count rate of the elastic events.
Line 242: Line 243:
 
The wavelength of the WIMP is
 
The wavelength of the WIMP is
 
\[
 
\[
\lambda  = \frac{h}{p} = 2\pi \frac{\hbar }{{m_p c}}\frac{m_p}{m_\chi}\frac{c}{v} \simeq 2\pi  \cdot 2 \cdot 10^{ - 14}
+
\lambda  = \frac{h}{p} = 2\pi \frac{\hbar }{m_p c}\frac{m_p}{m_\chi}\frac{c}{v} \simeq 2\pi  \cdot 2 \cdot 10^{ - 14}
 
\mbox{cm} \cdot 10^{ - 2}  \cdot 10^3  \simeq 1.3 \cdot 10^{ -12} \mbox{ cm}
 
\mbox{cm} \cdot 10^{ - 2}  \cdot 10^3  \simeq 1.3 \cdot 10^{ -12} \mbox{ cm}
 
\]
 
\]
Line 253: Line 254:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 11 ===
 
=== Problem 11 ===
 
Find the total WIMP-nucleus cross-section determining the elastic events' count rate.
 
Find the total WIMP-nucleus cross-section determining the elastic events' count rate.
Line 271: Line 273:
 
f_{p,n}  = \sum\limits_{q = u,d,s} {f_{T_q }^{(p,n)} a_q
 
f_{p,n}  = \sum\limits_{q = u,d,s} {f_{T_q }^{(p,n)} a_q
 
\frac{m_{p,n}}{m_q} + \frac{2}{27}f_{TG}^{(p,n)}
 
\frac{m_{p,n}}{m_q} + \frac{2}{27}f_{TG}^{(p,n)}
\sum\limits_{q = c,b,t} {a_q \frac{{m_{p,n} }}{{m_q }}} },
+
\sum\limits_{q = c,b,t} {a_q \frac{m_{p,n}}{m_q}} },
 
\]
 
\]
 
where $a_q $ are the WIMP-quark coupling constants and the quantity $f_{T_q
 
where $a_q $ are the WIMP-quark coupling constants and the quantity $f_{T_q
Line 282: Line 284:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 12 ===
 
=== Problem 12 ===
 
How will the number of counts for the elastic events detector be affected by transition to heavier target nuclei at fixed detector mass?
 
How will the number of counts for the elastic events detector be affected by transition to heavier target nuclei at fixed detector mass?

Latest revision as of 10:43, 4 October 2012




Problem 1

Estimate the WIMPs' flow onto the Earth's surface.


Problem 2

What are the main processes due to which the WIMPs can be detected?


Problem 3

Show that WIMPs of mass $\sim100GeV$ being elastically scattered on Xenon nuclei with mass $\sim130GeV$ lead to energy recoil $\le40keV$.


Problem 4

Show that the WIMPs' elastic scattering experiments will be most efficient if the target nuclei's mass is comparable with the WIMPs' mass.


Problem 5

Determine the minimum velocity of WIMPs that can transmit energy $Q$ to a nucleus with mass $m_N$.


Problem 6

Estimate the count rate for the detector registering elastic events of WIMPs.


Problem 7

Obtain the expression for the count rate of the detector registering elastic events of WIMPs.


Problem 8

Reconstruct the one-dimensional WIMPs' velocities distribution $f_1(v)$ (see the previous problem) basing on the given count rate of the elastic events.


Problem 9

Construct a model-independent scheme for WIMPs' mass determination using the results of WIMPs' elastic scattering events detection for two or more sets of experimental data with detectors of different composition.


Problem 10

Show that if a WIMP has the mass of the order $100GeV$ and velocity of the order of $300km/s$, then it coherently interacts with nucleons of a detector nuclei.


Problem 11

Find the total WIMP-nucleus cross-section determining the elastic events' count rate.


Problem 12

How will the number of counts for the elastic events detector be affected by transition to heavier target nuclei at fixed detector mass?


Problem 13

Show that if the WIMPs' mass is of the order of $100GeV$ then the elastic spin-independent cross-section for WIMPs on a nucleus with $A\sim100$ is eight orders of magnitude larger then the corresponding cross-section on a nucleon


Problem 14

Estimate the annual modulations' amplitude of the WIMPs elastic scattering cross-section.


Problem 15

Estimate the diurnal modulations' amplitude of the WIMPs elastic scattering cross-section.