Difference between revisions of "Dynamics of the Universe in terms of redshift and conformal time"

From Universe in Problems
Jump to: navigation, search
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Dynamics of the Universe in the Big Bang Model|8]]
+
[[Category:Dynamics of the Universe in the Big Bang Model|9]]
__NOTOC__
+
__TOC__
 +
 
 
<div id="dyn13"></div>
 
<div id="dyn13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1. ===
+
=== Problem 1: the first Friedman equation ===
 
Express the first Friedman equation in terms of redshift and analyze the contribution of different terms in different epochs.
 
Express the first Friedman equation in terms of redshift and analyze the contribution of different terms in different epochs.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using the relation $a_{0}/a=z+1$ with normalization $a_{0}=1$, we can rewrite the energy conservation law for every non-interacting component as
 +
\[\Omega_{i}=\Omega_{i0}a^{-3(1+w_{i})}
 +
=\Omega_{i0}(1+z)^{3(1+w_{i})},\]
 +
so for the Universe filled with matter, radiation and curvature the first Friedman equation becomes
 +
\[H^{2}(z) = H_0^2\left[
 +
\Omega _{r0}(1+z)^4 + \Omega_{m0}(1+z)^3+
 +
\Omega_{k0}(1+z)^2\right].\]
 +
At large $z$ (early Universe) the term with the highest power becomes dominating -- that is, the one with radiation. As the term with curvature [[The role of curvature in the dynamics of the Universe#dyn3|is very small at present]], it was all the more negligible before. On the other hand, it should become dominating in the future ($1+z\to 0$), but in the standard cosmological model, which will be discussed in the corresponding chapter later, the cosmological constant enters the play before that, and the curvature term does not ever have the chance to shine.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
  
  
Line 17: Line 24:
 
<div id="dyn63"></div>
 
<div id="dyn63"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2. ===
+
 
Find the conformal time as function of the scale factor for a Universe with domination of a) radiation and b) non-relativistic matter.
+
=== Problem 2: $\eta(a)$ in one-component Universe ===
 +
Find the conformal time as function of the scale factor for a Universe with domination of '''a)''' radiation and '''b)''' non-relativistic matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As
 +
\[\eta  = \int \frac{dt}{a(t)},\]
 +
for the Universe with the radiation component dominating
 +
$a(t) \sim t^{1/2}$, so $\eta \sim a$.
 +
 
 +
For the non-relativistic matter
 +
$a(t) \sim t^{2/3}$, so $\eta\sim a^{1/2}.$</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn64"></div>
 
<div id="dyn64"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3. ===
+
 
 +
=== Problem 3: $t(z)$ for matter domination ===
 
Find the relation between time and redshift in the Universe with dominating matter.
 
Find the relation between time and redshift in the Universe with dominating matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using $H(z)$, we can express the first Friedman equation in the form
 +
\[\left(\frac{\dot z}{1 + z} \right)^2
 +
=H_0^2 \sum\limits_i{\Omega_i},\]
 +
where $\Omega_i$ are the relative densities of all components filling the Universe (including curvature) with state parameters $w_i$. On separating variables, we arrive to
 +
\[t_0(z) = \frac{1}{H_0}\int_0^z\frac{dz'}
 +
{(1 + z')\sqrt{\sum
 +
\limits_i \Omega _i(1 + z')^{3(1 +w_i)}}}.\]
 +
In case $\Omega _{m0} = 1,\;\Omega _{r0} =\Omega _{curv} = 0$ then
 +
\[t_0(z) = \frac{2/3}{H_0\sqrt{\Omega _{m0}}}
 +
\left(1-\frac{1}{(1 + z)^{3/2}}\right).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn65"></div>
 
<div id="dyn65"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4. ===
+
=== Problem 4: $a(\eta)$ for radiation domination ===
 
Derive $a(\eta)$ for a spatially flat Universe with dominating radiation.
 
Derive $a(\eta)$ for a spatially flat Universe with dominating radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation takes the form
 +
\[\frac{1}{a^4}\left(\frac{da}{d\eta}\right)^2
 +
= H_0^2\frac{\Omega _{r0}}{a^4},\]
 +
and its solution is
 +
\[a - a_0 = H_0\sqrt{\Omega _{r0}}(\eta-\eta_0 ).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn66"></div>
 
<div id="dyn66"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5. ===
+
=== Problem 5: $t(\eta)$ for dominating radiation ===
 
Express the cosmic time through the conformal time in a Universe with dominating radiation.
 
Express the cosmic time through the conformal time in a Universe with dominating radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using the result of the previous problem with $a_0 =0$, we have
 +
\[t = \int a(\eta )d\eta
 +
=\frac{1}{2}H_0\sqrt{\Omega _{r0}}\;\eta^2.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn67"></div>
 
<div id="dyn67"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6. ===
+
=== Problem 6: $a(\eta)$ for dominating dust ===
 
Derive $a(\eta)$ for a spatially flat Universe with dominating matter.
 
Derive $a(\eta)$ for a spatially flat Universe with dominating matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In this case the first Friedman equation is
 +
\[\frac{1}{a^4}\left(\frac{da}{d\eta}\right)^2
 +
= \frac{H_0^2\Omega _{m0}}{a^3},\]
 +
and we obtain
 +
\[a(\eta)-a_{0}
 +
= \frac{H_0^2\Omega _{m0}}{4}(\eta-\eta_0)^2.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn68"></div>
 
<div id="dyn68"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7. ===
+
=== Problem 7: $a(\eta)$ for radiation and dust ===
 
Find $a(\eta)$ for a spatially flat Universe filled with a mixture of radiation and matter.
 
Find $a(\eta)$ for a spatially flat Universe filled with a mixture of radiation and matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation is
 +
\[\frac{1}{a^4}\left(\frac{da}{d\eta}\right)^2
 +
= H_0^2\left(\frac{\Omega _{m0}}{a^3}
 +
+ \frac{\Omega _{r0}}{a^4} \right),\]so
 +
\[\frac{H_{0}\Omega_{m0}}{2}(\eta-\eta_{0})
 +
=\sqrt{\Omega_{r0}+\Omega_{m0}a}
 +
-\sqrt{\Omega_{r0}+\Omega_{m0}a_{0}}.\]
 +
Let $\eta_{0}=a_{0}=0$. Then
 +
\[a=\frac{H_{0}^{2}\Omega_{m0}}{4}\,\eta^{2}
 +
-H_{0}\sqrt{\Omega_{m0}}\;\eta\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn69"></div>
 
<div id="dyn69"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8. ===
+
=== Problem 8: variable EoS parameter ===
 
Suppose a component's state parameter  $w_i=p_i/\rho_i$ is a function of time. Find its density as function of redshift.
 
Suppose a component's state parameter  $w_i=p_i/\rho_i$ is a function of time. Find its density as function of redshift.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As $w_i =w_{i}(t)$ and $t = t(z)$, we have $w_i = w_{i}(z)$. The conservation equation then is
 +
\[\dot\rho_{i}+3\frac{\dot z}{1 + z}[1+w(z)]\rho_{i}= 0.\]
 +
Separating the variables, one gets
 +
\[\rho_{i}(z)
 +
=\rho_{i0}\exp\left\{
 +
-3\int_0^z \big[1 + w_{i}(z')\big]
 +
\frac{dz'}{(1 + z')}\right\}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn70"></div>
 
<div id="dyn70"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9. ===
+
=== Problem 9: $H(z)$ for dominating dust ===
 
Derive the Hubble parameter as a function of redshift in a Universe filled with non-relativistic matter.
 
Derive the Hubble parameter as a function of redshift in a Universe filled with non-relativistic matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">From the first Friedman equation
 +
\[H^2 = H_0^2\Omega _{m0}(1 + z)^3
 +
\quad\Rightarrow\quad
 +
H(z)=H_0\sqrt {\Omega _{m0}} (1 + z)^{3/2}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn74"></div>
 
<div id="dyn74"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10. ===
+
=== Problem 10: $\dot z$ for dominating dust ===
The redshift of any object slowly changes with time \label{dot z} due to acceleration (or deceleration) of the Universe's expansion. Find the rate of change of redshift $\dot{z}$ for a Universe with dominating non-relativistic matter.
+
The redshift of any object slowly changes with time due to acceleration (or deceleration) of the Universe's expansion. Find the rate of change of redshift $\dot{z}$ for a Universe with dominating non-relativistic matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The equation of null curve (and radial null geodesics) is $ds^{2}=a^{2}(d\eta^{2}-d\chi^{2})=0$, and thus $d\eta=\pm d\chi$. Then the light signal, which comes from a source at comoving distance $\chi$, and which we observe at conformal time $\eta_{0}$, was emitted at conformal time $\eta_{e}=\eta_{0}-\chi$. The observed redshift is thus a function of the time of observation $\eta_0$ and is equal to
 +
\[z\left(\eta _0 \right)
 +
= \frac{a_0}{a_e} - 1
 +
= \frac{a\left(\eta_0\right)}
 +
{ a\left(\eta _0 - \chi \right)}-1.\]
 +
As $\chi$ does not change (we a looking at the same object), recalling the definition of conformal time $d\eta  = dt/a(t)$, we get
 +
\begin{align*}
 +
\dot z \equiv \frac{dz}{dt_0}
 +
&= \frac{1}{a\left( \eta _0\right)}
 +
\frac{\partial z}{\partial\eta _0}
 +
= \frac{1}{a\left( \eta _0\right)}
 +
\frac{\partial }{\partial\eta _0}
 +
\left(\frac{a\left(\eta _0 \right)}
 +
{a\left( \eta _0- \chi  \right)} -1 \right)=\\
 +
&= \frac{1}{a(\eta_0 - \chi)\,a(\eta _0)}
 +
\frac{\partial a(\eta _0)}{\partial \eta _0}
 +
- \frac{1}{a(\eta _0 - \chi)^2}
 +
\frac{\partial a(\eta _0 - \chi)}
 +
{\partial(\eta _0- \chi)}=\\
 +
&=\frac{\dot a_0}{a_e} - \frac{\dot a_e}{a_e}
 +
= (1+z)\frac{\dot a_0}{a_0} - \frac{\dot a_e}{a_e}
 +
= (1 + z)H_0 - H(z)
 +
\end{align*}
 +
For the Universe with dominating non-relativistic matter then
 +
\[\dot z =  \left(1 + z\right)H_0
 +
\left(1 - \sqrt{\Omega _{m0}}(1 +z)^{1/2}\right).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
 
+
  
  
 
<div id="dyn51"></div>
 
<div id="dyn51"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11. ===
+
=== Problem 11: optical horizon ===
The Universe is known to have become transparent for electromagnetic waves at $z\approx 1100$ (in the process of formation of neutral hydrogen,  recombination), i.e when it was $1100$ times smaller than at present. Thus in practice the possibility of optical observation of the Universe optically is limited by the so-called optical horizon: the maximal distance that light travels since the moment of recombination. Find the ratio of the optical horizon to the particle one for a Universe dominated by matter.
+
The Universe is known to have become transparent for electromagnetic waves at $z\approx 1100$ (in the process of formation of neutral hydrogen,  recombination), i.e when it was $1100$ times smaller than at present. Thus in practice the possibility of optical observation of the Universe is limited by the so-called optical horizon: the maximal distance that light travels since the moment of recombination. Find the ratio of the optical horizon to the particle one for a Universe dominated by matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The comoving distance $\chi$ to the surface we are observing is determined from the condition  $ds^2 = dt^2 - a(t)d\chi^2 = 0$. Expressing $\chi$ thought its redshift, we get
 +
\[\chi = \int_0^z \frac{dz'}{H(z')}.\]
 +
For a model with dominating matter
 +
\[\chi = \int_0^z \frac{dz'}{H_0\sqrt{\Omega _{m0}
 +
(1 + z')^3}}  =\frac{2}{H_0\sqrt{\Omega _{m0}}}
 +
\left( 1 - \sqrt {\frac{1}{1 + z}}\right).\]
 +
Using $\Omega _{m0} \approx 1$ and the value of redshift at the moment of recombination $z_r \approx 1100$, we arrive to $\chi\approx 7.8$ GPc.
 +
 
 +
Then the particle horizon is
 +
\[ L_{p} = \int_0^\infty
 +
\frac{dz}{H_0\sqrt {\Omega _{m0}(1 + z)^3}}=
 +
\frac{2}{H_0\sqrt{\Omega _{m0}}}
 +
\approx 8.02\mbox{ GPc},\]
 +
and therefore
 +
\[\frac{L_{p}}{\chi} =
 +
\Big(1 - \sqrt {\frac{1}{1 + z}}\Big)^{-1}
 +
\approx 1+\frac{1}{\sqrt{z}}
 +
\approx 1.031.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
 
+
  
  
 
<div id="dyn54"></div>
 
<div id="dyn54"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12. ===
+
 
 +
=== Problem 12: particle horizon ===
 
Derive the particle horizon as function of redshift for a Universe filled with matter and radiation with relative densities $\Omega_{m0}$ and $\Omega_{r0}$.
 
Derive the particle horizon as function of redshift for a Universe filled with matter and radiation with relative densities $\Omega_{m0}$ and $\Omega_{r0}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In the same way as for the [[#dyn51|optical horizon]], for the model with domination of radiation and matter we obtain
 +
\[L_{p} =\int\limits_{0}^{z}
 +
\frac{dz'}{H_0\sqrt{
 +
\Omega _{m0}(1 + z')^3 +\Omega_{r0}(1 + z')^4}}
 +
=\frac{2}{\Omega _{m0}H_0}
 +
\left(1 - \sqrt{\frac{1+\Omega_{r0}z}{1 + z}}\right).\]
 +
We have taken into account here that $\Omega _{m0} + \Omega _{r0} = 1$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
 
+
  
  
 
<div id="dyn55"></div>
 
<div id="dyn55"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13. ===
+
 
 +
=== Problem 13: time dilation at cosmological horizon ===
 
Show that any signal emitted from the cosmological horizon will arrive to the observer with infinite redshift.
 
Show that any signal emitted from the cosmological horizon will arrive to the observer with infinite redshift.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>
+
</div> --></div>
</div>
+

Latest revision as of 22:04, 12 November 2012

Problem 1: the first Friedman equation

Express the first Friedman equation in terms of redshift and analyze the contribution of different terms in different epochs.


Problem 2: $\eta(a)$ in one-component Universe

Find the conformal time as function of the scale factor for a Universe with domination of a) radiation and b) non-relativistic matter.


Problem 3: $t(z)$ for matter domination

Find the relation between time and redshift in the Universe with dominating matter.


Problem 4: $a(\eta)$ for radiation domination

Derive $a(\eta)$ for a spatially flat Universe with dominating radiation.


Problem 5: $t(\eta)$ for dominating radiation

Express the cosmic time through the conformal time in a Universe with dominating radiation.


Problem 6: $a(\eta)$ for dominating dust

Derive $a(\eta)$ for a spatially flat Universe with dominating matter.


Problem 7: $a(\eta)$ for radiation and dust

Find $a(\eta)$ for a spatially flat Universe filled with a mixture of radiation and matter.


Problem 8: variable EoS parameter

Suppose a component's state parameter $w_i=p_i/\rho_i$ is a function of time. Find its density as function of redshift.


Problem 9: $H(z)$ for dominating dust

Derive the Hubble parameter as a function of redshift in a Universe filled with non-relativistic matter.


Problem 10: $\dot z$ for dominating dust

The redshift of any object slowly changes with time due to acceleration (or deceleration) of the Universe's expansion. Find the rate of change of redshift $\dot{z}$ for a Universe with dominating non-relativistic matter.


Problem 11: optical horizon

The Universe is known to have become transparent for electromagnetic waves at $z\approx 1100$ (in the process of formation of neutral hydrogen, recombination), i.e when it was $1100$ times smaller than at present. Thus in practice the possibility of optical observation of the Universe is limited by the so-called optical horizon: the maximal distance that light travels since the moment of recombination. Find the ratio of the optical horizon to the particle one for a Universe dominated by matter.


Problem 12: particle horizon

Derive the particle horizon as function of redshift for a Universe filled with matter and radiation with relative densities $\Omega_{m0}$ and $\Omega_{r0}$.


Problem 13: time dilation at cosmological horizon

Show that any signal emitted from the cosmological horizon will arrive to the observer with infinite redshift.