Difference between revisions of "Dynamics of the Universe in terms of redshift and conformal time"

From Universe in Problems
Jump to: navigation, search
(Problem 10.)
Line 8: Line 8:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using the relation $a_{0}/a=z+1$ with normalization $a_{0}=1$, we can rewrite the energy conservation law for every non-interacting component as
 +
\[\Omega_{i}=\Omega_{i0}a^{-3(1+w_{i})}
 +
=\Omega_{i0}(1+z)^{3(1+w_{i})},\]
 +
so for the Universe filled with matter, radiation and curvature the first Friedman equation becomes
 +
\[H^{2}(z) = H_0^2\left[
 +
\Omega _{r0}(1+z)^4 + \Omega_{m0}(1+z)^3+
 +
\Omega_{k0}(1+z)^2\right].\]
 +
At large $z$ (early Universe) the term with the highest power becomes dominating -- that is, the one with radiation. As the term with curvature is very small at present (see problem (\ref{dyn3})), it was all the more negligible before. On the other hand, it should become dominating in the future ($1+z\to 0$), but in the standard cosmological model, which will be discussed in the corresponding chapter later, the cosmological constant enters the play before that, and the curvature term does not ever have the chance to shine.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 22: Line 29:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As
 +
\[\eta  = \int \frac{dt}{a(t)},\]
 +
for the Universe with the radiation component dominating
 +
$a(t) \sim t^{1/2}$, so $\eta \sim a$.
 +
 
 +
For the non-relativistic matter
 +
$a(t) \sim t^{2/3}$, so $\eta\sim a^{1/2}.$</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 37: Line 50:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using $H(z)$, we can express the first Friedman equation in the form
 +
\[\left(\frac{\dot z}{1 + z} \right)^2
 +
=H_0^2 \sum\limits_i{\Omega_i},\]
 +
where $\Omega_i$ are the relative densities of all components filling the Universe (including curvature) with state parameters $w_i$. On separating variables, we arrive to
 +
\[t_0(z) = \frac{1}{H_0}\int_0^z\frac{dz'}
 +
{(1 + z')\sqrt{\sum
 +
\limits_i \Omega _i(1 + z')^{3(1 +w_i)}}}.\]
 +
In case $\Omega _{m0} = 1,\;\Omega _{r0} =\Omega _{curv} = 0$ then
 +
\[t_0(z) = \frac{2/3}{H_0\sqrt{\Omega _{m0}}}
 +
\left(1-\frac{1}{(1 + z)^{3/2}}\right).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 51: Line 73:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation takes the form
 +
\[\frac{1}{a^4}\left(\frac{da}{d\eta}\right)^2
 +
= H_0^2\frac{\Omega _{r0}}{a^4},\]
 +
and its solution is
 +
\[a - a_0 = H_0\sqrt{\Omega _{r0}}(\eta-\eta_0 ).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 65: Line 91:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using the result of the previous problem with $a_0 =0$, we have
 +
\[t = \int a(\eta )d\eta
 +
=\frac{1}{2}H_0\sqrt{\Omega _{r0}}\;\eta^2.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 79: Line 107:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In this case the first Friedman equation is
 +
\[\frac{1}{a^4}\left(\frac{da}{d\eta}\right)^2
 +
= \frac{H_0^2\Omega _{m0}}{a^3},\]
 +
and we obtain
 +
\[a(\eta)-a_{0}
 +
= \frac{H_0^2\Omega _{m0}}{4}(\eta-\eta_0)^2.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 93: Line 126:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation is
 +
\[\frac{1}{a^4}\left(\frac{da}{d\eta}\right)^2
 +
= H_0^2\left(\frac{\Omega _{m0}}{a^3}
 +
+ \frac{\Omega _{r0}}{a^4} \right),\]so
 +
\[\frac{H_{0}\Omega_{m0}}{2}(\eta-\eta_{0})
 +
=\sqrt{\Omega_{r0}+\Omega_{m0}a}
 +
-\sqrt{\Omega_{r0}+\Omega_{m0}a_{0}}.\]
 +
Let $\eta_{0}=a_{0}=0$. Then
 +
\[a=\frac{H_{0}^{2}\Omega_{m0}}{4}\,\eta^{2}
 +
-H_{0}\sqrt{\Omega_{m0}}\;\eta\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 107: Line 149:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As $w_i =w_{i}(t)$ and $t = t(z)$, we have $w_i = w_{i}(z)$. The conservation equation then is
 +
\[\dot\rho_{i}+3\frac{\dot z}{1 + z}[1+w(z)]\rho_{i}= 0.\]
 +
Separating the variables, one gets
 +
\[\rho_{i}(z)
 +
=\rho_{i0}\exp\left\{
 +
-3\int_0^z \big[1 + w_{i}(z')\big]
 +
\frac{dz'}{(1 + z')}\right\}.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 121: Line 169:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">From the first Friedman equation
 +
\[H^2 = H_0^2\Omega _{m0}(1 + z)^3
 +
\quad\Rightarrow\quad
 +
H(z)=H_0\sqrt {\Omega _{m0}} (1 + z)^{3/2}.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 135: Line 186:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The equation of null curve (and radial null geodesics) is $ds^{2}=a^{2}(d\eta^{2}-d\chi^{2})=0$, and thus $d\eta=\pm d\chi$. Then the light signal, which comes from a source at comoving distance $\chi$, and which we observe at conformal time $\eta_{0}$, was emitted at conformal time $\eta_{e}=\eta_{0}-\chi$. The observed redshift is thus a function of the time of observation $\eta_0$ and is equal to
 +
\[z\left(\eta _0 \right)
 +
= \frac{a_0}{a_e} - 1
 +
= \frac{a\left(\eta_0\right)}
 +
{ a\left(\eta _0 - \chi \right)}-1.\]
 +
As $\chi$ does not change (we a looking at the same object), recalling the definition of conformal time $d\eta  = dt/a(t)$, we get
 +
\begin{align*}
 +
\dot z \equiv \frac{dz}{dt_0}
 +
&= \frac{1}{a\left( \eta _0\right)}
 +
\frac{\partial z}{\partial\eta _0}
 +
= \frac{1}{a\left( \eta _0\right)}
 +
\frac{\partial }{\partial\eta _0}
 +
\left(\frac{a\left(\eta _0 \right)}
 +
{a\left( \eta _0- \chi  \right)} -1 \right)=\\
 +
&= \frac{1}{a(\eta_0 - \chi)\,a(\eta _0)}
 +
\frac{\partial a(\eta _0)}{\partial \eta _0}
 +
- \frac{1}{a(\eta _0 - \chi)^2}
 +
\frac{\partial a(\eta _0 - \chi)}
 +
{\partial(\eta _0- \chi)}=\\
 +
&=\frac{\dot a_0}{a_e} - \frac{\dot a_e}{a_e}
 +
= (1+z)\frac{\dot a_0}{a_0} - \frac{\dot a_e}{a_e}
 +
= (1 + z)H_0 - H(z)
 +
\end{align*}
 +
For the Universe with dominating non-relativistic matter then
 +
\[\dot z =  \left(1 + z\right)H_0
 +
\left(1 - \sqrt{\Omega _{m0}}(1 +z)^{1/2}\right).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 145: Line 221:
 
<div id="dyn51"></div>
 
<div id="dyn51"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
 
=== Problem 11. ===
 
=== Problem 11. ===
 
The Universe is known to have become transparent for electromagnetic waves at $z\approx 1100$ (in the process of formation of neutral hydrogen,  recombination), i.e when it was $1100$ times smaller than at present. Thus in practice the possibility of optical observation of the Universe optically is limited by the so-called optical horizon: the maximal distance that light travels since the moment of recombination. Find the ratio of the optical horizon to the particle one for a Universe dominated by matter.
 
The Universe is known to have become transparent for electromagnetic waves at $z\approx 1100$ (in the process of formation of neutral hydrogen,  recombination), i.e when it was $1100$ times smaller than at present. Thus in practice the possibility of optical observation of the Universe optically is limited by the so-called optical horizon: the maximal distance that light travels since the moment of recombination. Find the ratio of the optical horizon to the particle one for a Universe dominated by matter.
Line 151: Line 226:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The comoving distance $\chi$ to the surface we are observing is determined from the condition  $ds^2 = dt^2 - a(t)d\chi^2 = 0$. Expressing $\chi$ thought its redshift, we get
 +
\[\chi = \int_0^z \frac{dz'}{H(z')}.\]
 +
For a model with dominating matter
 +
\[\chi = \int_0^z \frac{dz'}{H_0\sqrt{\Omega _{m0}
 +
(1 + z')^3}}  =\frac{2}{H_0\sqrt{\Omega _{m0}}}
 +
\left( 1 - \sqrt {\frac{1}{1 + z}}\right).\]
 +
Using $\Omega _{m0} \approx 1$ and the value of redshift at the moment of recombination $z_r \approx 1100$, we arrive to $\chi\approx 7.8${\it GPc}.
 +
 
 +
Then the particle horizon is
 +
\[ L_{p} = \int_0^\infty
 +
\frac{dz}{H_0\sqrt {\Omega _{m0}(1 + z)^3}}=
 +
\frac{2}{H_0\sqrt{\Omega _{m0}}}
 +
\approx 8.02\mbox{\it GPc},\]
 +
and therefore
 +
\[\frac{L_{p}}{\chi} =
 +
\Big(1 - \sqrt {\frac{1}{1 + z}}\Big)^{-1}
 +
\approx 1+\frac{1}{\sqrt{z}}
 +
\approx 1.031.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 166: Line 258:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Analogously to the problem \ref{dyn51}, for the model with dominating of radiation and matter we obtain
 +
\[L_{p} =\int\limits_{0}^{z}
 +
\frac{dz'}{H_0\sqrt{
 +
\Omega _{m0}(1 + z')^3 +\Omega_{r0}(1 + z')^4}}
 +
=\frac{2}{\Omega _{m0}H_0}
 +
\left(1 - \sqrt{\frac{1+\Omega_{r0}z}{1 + z}}\right).\]
 +
We have taken into account here that $\Omega _{m0} + \Omega _{r0} = 1$.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>

Revision as of 21:27, 23 July 2012


Problem 1.

Express the first Friedman equation in terms of redshift and analyze the contribution of different terms in different epochs.


Problem 2.

Find the conformal time as function of the scale factor for a Universe with domination of a) radiation and b) non-relativistic matter.


Problem 3.

Find the relation between time and redshift in the Universe with dominating matter.


Problem 4.

Derive $a(\eta)$ for a spatially flat Universe with dominating radiation.


Problem 5.

Express the cosmic time through the conformal time in a Universe with dominating radiation.


Problem 6.

Derive $a(\eta)$ for a spatially flat Universe with dominating matter.


Problem 7.

Find $a(\eta)$ for a spatially flat Universe filled with a mixture of radiation and matter.


Problem 8.

Suppose a component's state parameter $w_i=p_i/\rho_i$ is a function of time. Find its density as function of redshift.


Problem 9.

Derive the Hubble parameter as a function of redshift in a Universe filled with non-relativistic matter.


Problem 10.

The redshift of any object slowly changes with time due to acceleration (or deceleration) of the Universe's expansion. Find the rate of change of redshift $\dot{z}$ for a Universe with dominating non-relativistic matter.



Problem 11.

The Universe is known to have become transparent for electromagnetic waves at $z\approx 1100$ (in the process of formation of neutral hydrogen, recombination), i.e when it was $1100$ times smaller than at present. Thus in practice the possibility of optical observation of the Universe optically is limited by the so-called optical horizon: the maximal distance that light travels since the moment of recombination. Find the ratio of the optical horizon to the particle one for a Universe dominated by matter.



Problem 12.

Derive the particle horizon as function of redshift for a Universe filled with matter and radiation with relative densities $\Omega_{m0}$ and $\Omega_{r0}$.



Problem 13.

Show that any signal emitted from the cosmological horizon will arrive to the observer with infinite redshift.