Difference between revisions of "Entropy of Expanding Universe"

From Universe in Problems
Jump to: navigation, search
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:Thermodynamics of Universe|3]]
 
[[Category:Thermodynamics of Universe|3]]
 +
 +
__NOTOC__
 +
 +
<div id="therm23_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Transform the energy conditions for the flat Universe to
 +
conditions for the entropy density (see [http://arxiv.org/abs/1009.4513])
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="therm29"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
Find the entropy density for the photon gas.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[
 +
  dS = \frac{dE}{T} + \frac{pdV}{T} = \frac{V}{T}\frac{d\rho}{dT}dT + \frac{\rho+ p}{T}dV \Rightarrow\] \[  \left( \frac{\partial S}{\partial V}
 +
\right)_T = \frac{\rho + p} {T} \Rightarrow
 +
  S = \frac{\rho  + p}{T}V + f(T).\]
 +
 +
As entropy is proportional to volume, then $f(T) =
 +
0.$ For the photon gas $p = \rho/3$, therefore
 +
$$
 +
s = \frac{S}{V} = \frac{4}{3}\frac{\rho}{T} = \frac{4}{3}\alpha
 +
{T^3}.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="therm30"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
Use the result of the previous problem to derive an alternative proof of the fact that $aT=const$ in the adiabatically expanding Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$$S = \frac{4}{3}\alpha T^3V = const;\quad V \propto a^3 \Rightarrow aT = const.$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="therm31"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
Find the adiabatic index for the CMB.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$$
 +
p \propto \rho  \propto a^{ - 4};\quad V \propto {a^3} \Rightarrow pV^\gamma = const,\quad \gamma  = \frac{4}{3}.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="therm32"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
Show that the ratio of CMB entropy density to the baryon number density $s_\gamma/n_b$ remains constant during the expansion of the Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$$s \propto T^3 \propto a^{ - 3};\quad n_b \propto a^{ - 3}.$$ Therefore their ratio remains constant during the expansion of Universe.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_6n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
Estimate the current entropy density of the Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The current entropy of the Universe is determined by the CMB photons. A rough estimate neglects the contribution of other particles, then one obtains
 +
    \[s = 2\frac{2\pi ^2}{45}T_0^3.\]
 +
For $T_0  \approx 2.725K$
 +
    \[s \approx 1.5 \cdot 10^3 \, cm^{-3}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_7n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
Estimate the entropy of the observable part of the Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Size of the observable part of the Universe is $l_{H0}  \sim 10^{28} \mbox{cm}$ and therefore
 +
\[S = \frac{4\pi}{3}sl_{H0}^3  \sim 10^{88}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_10"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 7 ===
 +
Why is the expansion of the Universe described by the Friedman equations adiabatic?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">It is because the heat flow is absent in the homogeneous and isotropic Universe.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_11"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
Show that entropy is conserved during the expansion of the Universe described by the Friedman equations.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The first law of thermodynamics
 +
\[
 +
dE + pdV = TdS
 +
\]
 +
can be transformed into the form
 +
\[
 +
a^3 \left[\frac{d\rho}{dt} + 3H(\rho  + p)\right] =T\frac{dS}{dt}.\]
 +
Then with the conservation equation
 +
\[\frac{d\rho}{dt}  + 3H(\rho  + p) = 0,\] which follows from the Friedmann equation, one obtains \[ \frac{dS}{dt} = 0 \Rightarrow S = const.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_12"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9 ===
 +
Show that the entropy density behaves as $s\propto a^{-3}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[S = const \Rightarrow  sV = const \Rightarrow  sV_0 a^3  = const \Rightarrow sa^3  = const \Rightarrow s \propto a^{ - 3}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_13"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 10 ===
 +
Using only thermodynamical considerations, show that if the energy density of some component is $\rho=const$
 +
than the state equation for that component reads $p=-\rho$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">By definition,
 +
\[
 +
p =  - \left( \frac{\partial E}{\partial V} \right)_S.
 +
\]
 +
If $\rho  = const$, then \[\frac{\partial E}{\partial V} = \rho\Rightarrow p =  - \rho.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ter_14"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11 ===
 +
Show that the product $aT$ is an approximate invariant in the Universe dominated by relativistic particles.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Consider a volume $V$, filled by photons and let it expands with the same rate as the whole Universe, i.e. $V \propto a^3 (t)$. For radiation $\rho  = \alpha T^4 $, $p = \rho/3.$ The first law of thermodynamics applied to the expanding Universe with no heat flow reads
 +
\[
 +
\frac{dE}{dt} =  - p\frac{dV}{dt}.
 +
\]
 +
As $E = \rho V$, then
 +
\[
 +
\frac{1}{T}\frac{dT}{dt} =  - \frac{1}{3V}\frac{dV}{dt},\] or equivalently \[ \frac{d}{dt}(\ln T) =  - \frac{d}{dt}(\ln a)\Rightarrow aT = const.
 +
\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
 +
<div id="ter_15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
Show that for a system of particles in thermal equilibrium,
 +
\[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The entropy of a system of particles in thermal equilibrium, is a function $S=S(V,T)$ such that
 +
\[dS=\frac{1}{T} \left(dE+pdV\right)=\frac{1}{T} \left[d(\rho V)+pdV\right]=\frac{1}{T} \left[V\frac{d\rho }{dT} dT+(p+\rho )dV\right]\]
 +
Hence
 +
\[\frac{\partial S}{\partial V} =\frac{1}{T} \left(\rho +p\right),\quad \frac{\partial S}{\partial V} =\frac{\partial S}{\partial T} =\frac{V}{T} \frac{d\rho }{dT} \]
 +
These derivatives must satisfy
 +
\[\frac{\partial }{\partial T} \left[\frac{1}{T} \left(\rho +p\right)\right]=\frac{\partial }{\partial V} \left(\frac{V}{T} \frac{d\rho }{dT} \right)\]
 +
Finally obtain
 +
\[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
<div id="ter_16"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
Show that for the substance with the equation $p=w\rho$ \[T\propto \rho ^{\frac{w}{w+1} } \]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\begin{array}{l} {\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\to \frac{d\rho }{dT} =\frac{1+w}{w} \frac{\rho }{T} ,} \\ {\frac{w}{w+1} \frac{d\rho }{\rho } =\frac{dT}{T} ,} \\ {T\propto \rho ^{\frac{w}{w+1} } } \end{array}\] </p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
<div id="ter_17"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 13 ===
 +
Show that for the substance with the equation $p=w\rho $
 +
\[T\propto a^{-3w} \]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[T\propto \rho ^{\frac{w}{w+1} } ,\quad \rho \propto a^{-3(1+w)} ,\to T\propto a^{-3w} \] </p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
 +
 +
<div id="ter_18"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14 ===
 +
Obtain a generalization of Stefan-Boltzmann law for cosmological fluid, described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For the polytropic equation of state the thermodynamical equation
 +
\[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]
 +
becomes
 +
\[\left(w+k(1+1/n)\rho ^{1/n} \right)\frac{d\rho }{dt} =\frac{1}{T} \left(w+1+k\rho ^{1/n} \right)\rho \]
 +
This equation can be integrated into
 +
\[T=T_{*} \left[1\pm \left(\rho /\rho _{*} \right)^{1/n} \right]^{\left(w+n+1\right)/\left(w+1\right)} \left(\rho /\rho _{*} \right)^{w/\left(w+1\right)} \]
 +
where  $T_{*} $is a constant of integration, the upper sign corresponds to$k>0$, and the lower sign corresponds to$k<0$. This relation can be viewed as a generalization of Stefan-Boltzmann law.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
 +
 +
 +
<div id="ter_19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 15 ===
 +
Show that the velocity of sound for cosmological fluid described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $ vanishes at the point where the temperature is extremum.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For the generalized polytropic equation of state  the velocity of sound is given by
 +
\[\begin{array}{l} {c_{s}^{2} =\frac{dp}{d\rho } =w\pm \left(w+1\right)\frac{n+1}{n} \left(\frac{\rho }{\rho _{*} } \right)^{1/n} ,} \\ {\rho _{*} =\left[\frac{w+1}{\left|k\right|} \right]^{n} } \end{array}\]
 +
The upper sign corresponds to$k>0$, and the lower sign corresponds to$k<0$. As we have seen in the previous problem
 +
\[T=T_{*} \left[1\pm \left(\rho /\rho _{*} \right)^{1/n} \right]^{\left(w+n+1\right)/\left(w+1\right)} \left(\rho /\rho _{*} \right)^{w/\left(w+1\right)} \]
 +
The extremum of temperature (when it exists) is located at
 +
\[\rho _{e} =\rho _{*} \left[\mp \frac{wn}{\left(w+1\right)(n+1)} \right]^{n} \]
 +
It is easy to see that the velocity of sound vanishes at the point where the temperature is extremum.</p>
 +
  </div>
 +
</div></div>

Latest revision as of 23:29, 8 January 2013



Problem 1

Transform the energy conditions for the flat Universe to conditions for the entropy density (see [1])


Problem 2

Find the entropy density for the photon gas.


Problem 3

Use the result of the previous problem to derive an alternative proof of the fact that $aT=const$ in the adiabatically expanding Universe.


Problem 4

Find the adiabatic index for the CMB.


Problem 5

Show that the ratio of CMB entropy density to the baryon number density $s_\gamma/n_b$ remains constant during the expansion of the Universe.


Problem 6

Estimate the current entropy density of the Universe.


Problem 7

Estimate the entropy of the observable part of the Universe.


Problem 7

Why is the expansion of the Universe described by the Friedman equations adiabatic?


Problem 8

Show that entropy is conserved during the expansion of the Universe described by the Friedman equations.


Problem 9

Show that the entropy density behaves as $s\propto a^{-3}$.


Problem 10

Using only thermodynamical considerations, show that if the energy density of some component is $\rho=const$ than the state equation for that component reads $p=-\rho$.


Problem 11

Show that the product $aT$ is an approximate invariant in the Universe dominated by relativistic particles.



Problem 12

Show that for a system of particles in thermal equilibrium, \[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]



Problem 12

Show that for the substance with the equation $p=w\rho$ \[T\propto \rho ^{\frac{w}{w+1} } \]



Problem 13

Show that for the substance with the equation $p=w\rho $ \[T\propto a^{-3w} \]




Problem 14

Obtain a generalization of Stefan-Boltzmann law for cosmological fluid, described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $.




Problem 15

Show that the velocity of sound for cosmological fluid described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $ vanishes at the point where the temperature is extremum.