Difference between revisions of "Entropy of Expanding Universe"

From Universe in Problems
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 104: Line 104:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Size of the observable part of the Universe is $l_{H0}  \sim 10^{28} \mbox{\it cm}$ and therefore
+
     <p style="text-align: left;">Size of the observable part of the Universe is $l_{H0}  \sim 10^{28} \mbox{cm}$ and therefore
 
\[S = \frac{4\pi}{3}sl_{H0}^3  \sim 10^{88}.\]</p>
 
\[S = \frac{4\pi}{3}sl_{H0}^3  \sim 10^{88}.\]</p>
 
   </div>
 
   </div>
Line 113: Line 113:
 
<div id="ter_10"></div>
 
<div id="ter_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 7 ===
 
=== Problem 7 ===
 
Why is the expansion of the Universe described by the Friedman equations adiabatic?
 
Why is the expansion of the Universe described by the Friedman equations adiabatic?
Line 191: Line 192:
 
\frac{1}{T}\frac{dT}{dt} =  - \frac{1}{3V}\frac{dV}{dt},\] or equivalently \[ \frac{d}{dt}(\ln T) =  - \frac{d}{dt}(\ln a)\Rightarrow aT = const.
 
\frac{1}{T}\frac{dT}{dt} =  - \frac{1}{3V}\frac{dV}{dt},\] or equivalently \[ \frac{d}{dt}(\ln T) =  - \frac{d}{dt}(\ln a)\Rightarrow aT = const.
 
\]</p>
 
\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
 +
<div id="ter_15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
Show that for a system of particles in thermal equilibrium,
 +
\[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The entropy of a system of particles in thermal equilibrium, is a function $S=S(V,T)$ such that
 +
\[dS=\frac{1}{T} \left(dE+pdV\right)=\frac{1}{T} \left[d(\rho V)+pdV\right]=\frac{1}{T} \left[V\frac{d\rho }{dT} dT+(p+\rho )dV\right]\]
 +
Hence
 +
\[\frac{\partial S}{\partial V} =\frac{1}{T} \left(\rho +p\right),\quad \frac{\partial S}{\partial V} =\frac{\partial S}{\partial T} =\frac{V}{T} \frac{d\rho }{dT} \]
 +
These derivatives must satisfy
 +
\[\frac{\partial }{\partial T} \left[\frac{1}{T} \left(\rho +p\right)\right]=\frac{\partial }{\partial V} \left(\frac{V}{T} \frac{d\rho }{dT} \right)\]
 +
Finally obtain
 +
\[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
<div id="ter_16"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
Show that for the substance with the equation $p=w\rho$ \[T\propto \rho ^{\frac{w}{w+1} } \]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\begin{array}{l} {\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\to \frac{d\rho }{dT} =\frac{1+w}{w} \frac{\rho }{T} ,} \\ {\frac{w}{w+1} \frac{d\rho }{\rho } =\frac{dT}{T} ,} \\ {T\propto \rho ^{\frac{w}{w+1} } } \end{array}\] </p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
<div id="ter_17"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 13 ===
 +
Show that for the substance with the equation $p=w\rho $
 +
\[T\propto a^{-3w} \]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[T\propto \rho ^{\frac{w}{w+1} } ,\quad \rho \propto a^{-3(1+w)} ,\to T\propto a^{-3w} \] </p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
 +
 +
<div id="ter_18"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14 ===
 +
Obtain a generalization of Stefan-Boltzmann law for cosmological fluid, described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For the polytropic equation of state the thermodynamical equation
 +
\[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]
 +
becomes
 +
\[\left(w+k(1+1/n)\rho ^{1/n} \right)\frac{d\rho }{dt} =\frac{1}{T} \left(w+1+k\rho ^{1/n} \right)\rho \]
 +
This equation can be integrated into
 +
\[T=T_{*} \left[1\pm \left(\rho /\rho _{*} \right)^{1/n} \right]^{\left(w+n+1\right)/\left(w+1\right)} \left(\rho /\rho _{*} \right)^{w/\left(w+1\right)} \]
 +
where  $T_{*} $is a constant of integration, the upper sign corresponds to$k>0$, and the lower sign corresponds to$k<0$. This relation can be viewed as a generalization of Stefan-Boltzmann law.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
 +
 +
 +
<div id="ter_19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 15 ===
 +
Show that the velocity of sound for cosmological fluid described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $ vanishes at the point where the temperature is extremum.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For the generalized polytropic equation of state  the velocity of sound is given by
 +
\[\begin{array}{l} {c_{s}^{2} =\frac{dp}{d\rho } =w\pm \left(w+1\right)\frac{n+1}{n} \left(\frac{\rho }{\rho _{*} } \right)^{1/n} ,} \\ {\rho _{*} =\left[\frac{w+1}{\left|k\right|} \right]^{n} } \end{array}\]
 +
The upper sign corresponds to$k>0$, and the lower sign corresponds to$k<0$. As we have seen in the previous problem
 +
\[T=T_{*} \left[1\pm \left(\rho /\rho _{*} \right)^{1/n} \right]^{\left(w+n+1\right)/\left(w+1\right)} \left(\rho /\rho _{*} \right)^{w/\left(w+1\right)} \]
 +
The extremum of temperature (when it exists) is located at
 +
\[\rho _{e} =\rho _{*} \left[\mp \frac{wn}{\left(w+1\right)(n+1)} \right]^{n} \]
 +
It is easy to see that the velocity of sound vanishes at the point where the temperature is extremum.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 23:29, 8 January 2013



Problem 1

Transform the energy conditions for the flat Universe to conditions for the entropy density (see [1])


Problem 2

Find the entropy density for the photon gas.


Problem 3

Use the result of the previous problem to derive an alternative proof of the fact that $aT=const$ in the adiabatically expanding Universe.


Problem 4

Find the adiabatic index for the CMB.


Problem 5

Show that the ratio of CMB entropy density to the baryon number density $s_\gamma/n_b$ remains constant during the expansion of the Universe.


Problem 6

Estimate the current entropy density of the Universe.


Problem 7

Estimate the entropy of the observable part of the Universe.


Problem 7

Why is the expansion of the Universe described by the Friedman equations adiabatic?


Problem 8

Show that entropy is conserved during the expansion of the Universe described by the Friedman equations.


Problem 9

Show that the entropy density behaves as $s\propto a^{-3}$.


Problem 10

Using only thermodynamical considerations, show that if the energy density of some component is $\rho=const$ than the state equation for that component reads $p=-\rho$.


Problem 11

Show that the product $aT$ is an approximate invariant in the Universe dominated by relativistic particles.



Problem 12

Show that for a system of particles in thermal equilibrium, \[\frac{dp}{dT} =\frac{1}{T} \left(\rho +p\right)\]



Problem 12

Show that for the substance with the equation $p=w\rho$ \[T\propto \rho ^{\frac{w}{w+1} } \]



Problem 13

Show that for the substance with the equation $p=w\rho $ \[T\propto a^{-3w} \]




Problem 14

Obtain a generalization of Stefan-Boltzmann law for cosmological fluid, described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $.




Problem 15

Show that the velocity of sound for cosmological fluid described by generalized polytropic equation of state $p=w\rho +k\rho ^{1+1/n} $ vanishes at the point where the temperature is extremum.