Difference between revisions of "Entropy of Expanding Universe"

From Universe in Problems
Jump to: navigation, search
Line 14: Line 14:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 25: Line 24:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">\[
\[
+
 
   dS = \frac{dE}{T} + \frac{pdV}{T} = \frac{V}{T}\frac{d\rho}{dT}dT + \frac{\rho+ p}{T}dV \Rightarrow\] \[  \left( \frac{\partial S}{\partial V}
 
   dS = \frac{dE}{T} + \frac{pdV}{T} = \frac{V}{T}\frac{d\rho}{dT}dT + \frac{\rho+ p}{T}dV \Rightarrow\] \[  \left( \frac{\partial S}{\partial V}
 
\right)_T = \frac{\rho + p} {T} \Rightarrow
 
\right)_T = \frac{\rho + p} {T} \Rightarrow
Line 36: Line 34:
 
s = \frac{S}{V} = \frac{4}{3}\frac{\rho}{T} = \frac{4}{3}\alpha
 
s = \frac{S}{V} = \frac{4}{3}\frac{\rho}{T} = \frac{4}{3}\alpha
 
{T^3}.
 
{T^3}.
$$
+
$$</p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 51: Line 47:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">$$S = \frac{4}{3}\alpha T^3V = const;\quad V \propto a^3 \Rightarrow aT = const.$$</p>
$$S = \frac{4}{3}\alpha T^3V = const;\quad V \propto a^3 \Rightarrow aT = const.$$
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 65: Line 60:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">$$
$$
+
 
p \propto \rho  \propto a^{ - 4};\quad V \propto {a^3} \Rightarrow pV^\gamma = const,\quad \gamma  = \frac{4}{3}.
 
p \propto \rho  \propto a^{ - 4};\quad V \propto {a^3} \Rightarrow pV^\gamma = const,\quad \gamma  = \frac{4}{3}.
$$
+
$$</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 81: Line 75:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">$$s \propto T^3 \propto a^{ - 3};\quad n_b \propto a^{ - 3}.$$ Therefore their ratio remains constant during the expansion of Universe.</p>
 
+
$$s \propto T^3 \propto a^{ - 3};\quad n_b \propto a^{ - 3}.$$ Therefore their ratio remains constant during the expansion of Universe.
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 96: Line 88:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">The current entropy of the Universe is determined by the CMB photons. A rough estimate neglects the contribution of other particles, then one obtains
 
+
The current entropy of the Universe is determined by the CMB photons. A rough estimate neglects the contribution of other particles, then one obtains
+
 
     \[s = 2\frac{2\pi ^2}{45}T_0^3.\]
 
     \[s = 2\frac{2\pi ^2}{45}T_0^3.\]
 
For $T_0  \approx 2.725K$
 
For $T_0  \approx 2.725K$
     \[s \approx 1.5 \cdot 10^3 \, cm^{-3}.\]
+
     \[s \approx 1.5 \cdot 10^3 \, cm^{-3}.\]</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 114: Line 104:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">Size of the observable part of the Universe is $l_{H0}  \sim 10^{28} \mbox{\it cm}$ and therefore
Size of the observable part of the Universe is $l_{H0}  \sim 10^{28} \mbox{\it cm}$ and therefore
+
\[S = \frac{4\pi}{3}sl_{H0}^3  \sim 10^{88}.\]</p>
\[S = \frac{4\pi}{3}sl_{H0}^3  \sim 10^{88}.\]
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 129: Line 118:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">It is because the heat flow is absent in the homogeneous and isotropic Universe.</p>
It is because the heat flow is absent in the homogeneous and isotropic Universe.
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 143: Line 131:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">The first law of thermodynamics
The first law of thermodynamics
+
 
\[
 
\[
 
dE + pdV = TdS
 
dE + pdV = TdS
Line 152: Line 139:
 
a^3 \left[\frac{d\rho}{dt} + 3H(\rho  + p)\right] =T\frac{dS}{dt}.\]
 
a^3 \left[\frac{d\rho}{dt} + 3H(\rho  + p)\right] =T\frac{dS}{dt}.\]
 
Then with the conservation equation
 
Then with the conservation equation
\[\frac{d\rho}{dt}  + 3H(\rho  + p) = 0,\] which follows from the Friedmann equation, one obtains \[ \frac{dS}{dt} = 0 \Rightarrow S = const.\]
+
\[\frac{d\rho}{dt}  + 3H(\rho  + p) = 0,\] which follows from the Friedmann equation, one obtains \[ \frac{dS}{dt} = 0 \Rightarrow S = const.\]</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 165: Line 152:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">\[S = const \Rightarrow  sV = const \Rightarrow  sV_0 a^3  = const \Rightarrow sa^3  = const \Rightarrow s \propto a^{ - 3}.\]</p>
\[S = const \Rightarrow  sV = const \Rightarrow  sV_0 a^3  = const \Rightarrow sa^3  = const \Rightarrow s \propto a^{ - 3}.\]
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
 +
  
 
<div id="ter_13"></div>
 
<div id="ter_13"></div>
Line 179: Line 166:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">By definition,
By definition,
+
 
\[
 
\[
 
p =  - \left( \frac{\partial E}{\partial V} \right)_S.
 
p =  - \left( \frac{\partial E}{\partial V} \right)_S.
 
\]
 
\]
If $\rho  = const$, then \[\frac{\partial E}{\partial V} = \rho\Rightarrow p =  - \rho.\]
+
If $\rho  = const$, then \[\frac{\partial E}{\partial V} = \rho\Rightarrow p =  - \rho.\]</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
 +
  
 
<div id="ter_14"></div>
 
<div id="ter_14"></div>
Line 196: Line 183:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">Consider a volume $V$, filled by photons and let it expands with the same rate as the whole Universe, i.e. $V \propto a^3 (t)$. For radiation $\rho  = \alpha T^4 $, $p = \rho/3.$ The first law of thermodynamics applied to the expanding Universe with no heat flow reads
Consider a volume $V$, filled by photons and let it expands with the same rate as the whole Universe, i.e. $V \propto a^3 (t)$. For radiation $\rho  = \alpha T^4 $, $p = \rho/3.$ The first law of thermodynamics applied to the expanding Universe with no heat flow reads
+
 
\[
 
\[
 
\frac{dE}{dt} =  - p\frac{dV}{dt}.
 
\frac{dE}{dt} =  - p\frac{dV}{dt}.
Line 204: Line 190:
 
\[
 
\[
 
\frac{1}{T}\frac{dT}{dt} =  - \frac{1}{3V}\frac{dV}{dt},\] or equivalently \[ \frac{d}{dt}(\ln T) =  - \frac{d}{dt}(\ln a)\Rightarrow aT = const.
 
\frac{1}{T}\frac{dT}{dt} =  - \frac{1}{3V}\frac{dV}{dt},\] or equivalently \[ \frac{d}{dt}(\ln T) =  - \frac{d}{dt}(\ln a)\Rightarrow aT = const.
\]
+
\]</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 22:17, 1 October 2012



Problem 1

Transform the energy conditions for the flat Universe to conditions for the entropy density (see [1])


Problem 2

Find the entropy density for the photon gas.


Problem 3

Use the result of the previous problem to derive an alternative proof of the fact that $aT=const$ in the adiabatically expanding Universe.


Problem 4

Find the adiabatic index for the CMB.


Problem 5

Show that the ratio of CMB entropy density to the baryon number density $s_\gamma/n_b$ remains constant during the expansion of the Universe.


Problem 6

Estimate the current entropy density of the Universe.


Problem 7

Estimate the entropy of the observable part of the Universe.


Problem 7

Why is the expansion of the Universe described by the Friedman equations adiabatic?


Problem 8

Show that entropy is conserved during the expansion of the Universe described by the Friedman equations.


Problem 9

Show that the entropy density behaves as $s\propto a^{-3}$.


Problem 10

Using only thermodynamical considerations, show that if the energy density of some component is $\rho=const$ than the state equation for that component reads $p=-\rho$.


Problem 11

Show that the product $aT$ is an approximate invariant in the Universe dominated by relativistic particles.