Difference between revisions of "Friedman equations"

From Universe in Problems
Jump to: navigation, search
(Created page with "Category:Dynamics of the Expanding Universe = Friedman equations = <div id="equ29"></div> === Problem 1. === Starting from the Einstein equations, derive the equations f...")
 
 
(23 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Dynamics of the Expanding Universe]]
+
[[Category:Dynamics of the Expanding Universe|5]]
 
+
__TOC__
= Friedman equations =
+
<div id="equ29"></div><div style="border: 1px solid #AAA; padding:5px;">
 
+
=== Problem 1: derivation of Friedman equations ===
<div id="equ29"></div>
+
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
=== Problem 1. ===
+
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric---the Friedman equations:
+
 
\begin{align}\label{FriedmanEqI}
 
\begin{align}\label{FriedmanEqI}
 
     \Big(\frac{\dot a}{a}\Big)^2& =\;
 
     \Big(\frac{\dot a}{a}\Big)^2& =\;
Line 12: Line 10:
 
     \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p).
 
     \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p).
 
\end{align}
 
\end{align}
Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$ ([[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|see problem]]).
+
Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;"> It is convenient to use the Einstein equations in the form
 +
\[R^\mu_\nu
 +
= 8\pi G\left( T^\mu_\nu
 +
- \frac{1}{2}\delta _\nu ^\mu T \right).\]
 +
Using the [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ28|explicit expressions for the Ricci tensor components of of the FLRW metric]], one obtains from the component $\binom{0}{0}$ the following equation:
 +
\[ - 3\frac{\ddot a}{a}
 +
= 8\pi G \cdot \frac{1}{2}(\rho  + 3p),\]
 +
and from the $\binom{1}{1}$ component
 +
\[- \frac{2{\dot a}^2 + a\ddot a + 2k}{a^2} =
 +
8\pi G \cdot \frac{1}{2}(p - \rho ).\]
 +
The components $\binom{2}{2}$ and $\binom{3}{3}$ give the same equations as  $\binom{1}{1}$, and the off-diagonal ones reduce to the identity$^*$ $0=0$.
 +
 
 +
Excluding the second derivative from the two independent equations one obtains the first Friedman equation, and on excluding the first derivative --- the second Friedman equation.
 +
 
 +
$^*$This is why the stress-energy tensor was taken in the form of stress-energy tensor of ideal fluid; otherwise we would have come to contradiction. More on this see in [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|the problem on cosmological energy-momentum tensor]].
 +
</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ66"></div>
+
 
=== Problem 2. ===
+
<div id="equ66"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
 
 +
=== Problem 2: reformulation in terms of conformal time ===
 
Derive the Friedman equations in terms of conformal time.
 
Derive the Friedman equations in terms of conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In order to rewrite the Friedman equations in terms of conformal time $dt=a(\eta)d\eta$, we note that
 +
\[\frac{d}{dt}
 +
=\frac{d\eta}{dt}\frac{d}{d\eta}
 +
=\frac{1}{a}\frac{d}{d\eta},\]
 +
and therefore
 +
\[\left(\frac{\dot{a}}{a}\right)^2
 +
=\frac{1}{a^2}\left(\frac{da}{d\eta}
 +
\frac{d\eta}{dt}\right)^2
 +
=\frac{(a')^2}{a^4},\]
 +
where the prime denotes the derivative with respect to the conformal time $\eta$. Then one gets
 +
\begin{align*}
 +
\ddot{a}=&\frac{d}{dt} \frac{da}{dt}=
 +
\frac{d}{dt}\frac{da}{dt}
 +
=\frac{d}{dt}\frac{da}{d\eta}\frac{d\eta}{dt}
 +
=\frac{d}{dt}\frac{a'}{a}=\\
 +
=&\frac{d\eta}{dt}\frac{d}{d\eta}\left(
 +
\frac{a'}{a}\right)=
 +
\frac{1}{a}\left(-\frac{a'^2}{a^2}+\frac{a''}{a}\right)=
 +
-\frac{a'^2}{a^3}+\frac{a''}{a^2}.
 +
\end{align*}
 +
After substitution of the derivatives into the Friedman equations one obtains the latter in the conformal time:
 +
\begin{align*}
 +
& (a')^2 +ka^2=\frac{8\pi G}{3}\rho a^4,\\
 +
&a'' +ka=\frac{4\pi G}{3}\left(\rho-3p\right)a^3.
 +
\end{align*}</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ40"></div>
+
 
=== Problem 3. ===
+
<div id="equ40"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3: relations between equations ===
 
Show that the first Friedman equation is the first integral of the second one.
 
Show that the first Friedman equation is the first integral of the second one.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>
+
</div> --></div>
 +
 
  
  
<div id="equ53"></div>
+
<div id="equ53"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4. ===
+
=== Problem 4: source of gravity in GR in the weak field limit ===
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The density distribution $\rho$ enters the Poisson equation $\Delta \Phi  = 4\pi G\rho$ and serves as the source of gravitational field in the Newtonian theory. In order to obtain the analogue of this equation in the frame of General Relativity, consider the Newtonian approximation of the Einstein theory: let $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$, where $h_{\mu\nu}$ is a small perturbation to the Minkowski metric $\eta_{\mu\nu}$. In this limit $h_{00}=1+2\Phi$, where $\Phi$ is the Newtonian gravitational potential. Then we linearize the Einstein equations
 +
\[R_{\mu \nu } =
 +
8\pi G\left( T_{\mu \nu } -
 +
\frac{1}{2}Tg_{\mu \nu } \right)\]
 +
with respect to $h_{\mu\nu}$.
 +
 
 +
In the first order of approximation we can neglect terms quadratic on $\Gamma$ in the Ricci tensor
 +
\begin{equation}\label{2-53}
 +
    R_{\nu \sigma } =
 +
\Gamma _{\nu \sigma ,\mu }^\mu
 +
-\Gamma _{\nu \mu ,\sigma }^\mu  +
 +
\Gamma _{\nu \sigma }^\alpha
 +
\Gamma _{\alpha \mu }^\mu
 +
-\Gamma _{\nu \mu }^\alpha
 +
\Gamma _{\alpha \sigma}^\mu,
 +
\end{equation}
 +
Also, for stationary metrics the second term in the $00$ component equals to zero, so
 +
\[R_{00} = \partial _\alpha \Gamma _{00}^\alpha=
 +
\frac{1}{2}\Delta g_{00} = \Delta \Phi.\]
 +
It is easy to see that $T_{\mu \nu }$ is of the first order of smallness with respect to $\Phi$, so from the $00$ component of the Einstein equation we obtain
 +
\[\Delta \Phi
 +
= 8\pi G\left( T_{00} - \frac{1}{2}T \right)
 +
= 8\pi G\left( \rho  - \frac{1}{2}(\rho  - 3p) \right)
 +
= 4\pi G(\rho  +3p).\]
 +
Therefore the source of gravitational field is not $\rho$, but the combination $\rho  + 3p$. In particular, an object satisfying the condition $\rho + 3p < 0$, will repel, rather than attract, non-relativistic particles.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ54"></div>
+
 
=== Problem 5. ===
+
<div id="equ54"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5: expansion and pressure ===
 
How does the magnitude of pressure affect the expansion rate?
 
How does the magnitude of pressure affect the expansion rate?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The increase of positive pressure leads to additional deceleration of expansion of the Universe. It absolutely contradicts our intuitive conceptions: strongly pressured substance expands. However, cosmological medium with positive pressure acts in the opposite way. Our intuition fails because force is determined by the gradient of pressure, and in the uniform medium (such as our Universe on the considered scales) there are no gradients of pressure. The pressure term in the second Friedman equation is a purely relativistic effect, that can only be described by General Relativity.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ41"></div>
+
<div id="equ41"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6. ===
+
=== Problem 6: second equation for $k=0$ ===
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
\[HH' =  - 4\pi G\left(\rho  + p\right),\]
 
\[HH' =  - 4\pi G\left(\rho  + p\right),\]
Line 73: Line 140:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">First of all,
 +
\[\dot{H}=\frac{\ddot a}{a}-{H^2},\]
 +
so it follows from the Friedman equations that
 +
\[\dot H =
 +
- \frac{4\pi G}{3}\left( \rho  + 3p\right) -
 +
\frac{8\pi G}{3}\rho
 +
=- 4\pi G(\rho  + p).\]
 +
On the other hand, $\dot H = H'H$, and one obtains the first Friedman equation in the required form
 +
\[H'H =  - 4\pi G(\rho  + p).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ29nn"></div>
+
 
=== Problem 7. ===
+
<div id="equ29nn"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7: Lorentz invariance ===
 
Are solutions of Friedman equations Lorentz-invariant?
 
Are solutions of Friedman equations Lorentz-invariant?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Solution of the Friedman equations violate the Lorentz invariance. In a Friedmannian Universe there is a selected cosmological time $t,$  which is the proper time of the comoving observer, who sees the spatially homogeneous and isotropic Universe. The situation is typical for physics: equations of General relativity are invariant with respect to Lorentz transformations, but particular solutions of the equations are in general not.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ31"></div>
+
 
=== Problem 8. ===
+
<div id="equ31"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8: critical density ===
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Spatial flatness means $k=0$. Then making use of the definition
 +
\[H=\frac{\dot {a}}{a},
 +
\quad H_0^2 = \frac{8\pi G}{3}\rho_{cr0},\]
 +
where $H_0$ is the present value of Hubble's parameter, we obtain from the first Friedman equation
 +
\[{\rho_{cr0}} = \frac{3H_0^2}{8\pi G}
 +
\approx 1.12 \cdot {10^{ - 29}}g/cm^3\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
 
<div id="equ33"></div>
 
<div id="equ33"></div>
=== Problem 9. ===
+
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9: relative densities ===
 
Show that the first Friedman equation can be presented in the form
 
Show that the first Friedman equation can be presented in the form
 
\[\sum\limits_i\Omega_i=1,\]
 
\[\sum\limits_i\Omega_i=1,\]
Line 112: Line 196:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation reads
 +
\[H^2 = \frac{8\pi G}{3}\sum\limits_i
 +
{\rho _i}  - \frac{k}{a^2},\]
 +
where $\sum\limits_i \rho _i$ is the total density of all components contributing to the Universe' composition. Then
 +
\[1 = \sum\limits_i \frac{8\pi G}{3H^2}
 +
\left( \rho _i - \frac{3}{8\pi G}\frac{k}{a^2} \right)
 +
= \sum\limits_i \frac{8\pi G}{3H^2}\left(
 +
\rho _i + \rho _{curv} \right)
 +
= \sum\limits_i \Omega_i .\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ34n"></div>
+
<div id="equ34n"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10. ===
+
=== Problem 10: scale factor via observables ===
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Extracting the curvature term from the Friedman equations. we can write
 +
\[\Omega=1+\frac{k}{a^2 H^2},\]
 +
so
 +
\[a= \frac{H^{-1}}{\big|\Omega- 1\big|^{1/2}}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ34"></div>
+
 
=== Problem 11. ===
+
<div id="equ34"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11: Newtonian interpretation ===
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>
+
</div> --></div>
 +
 
  
  
<div id="equ35"></div>
+
<div id="equ35"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12. ===
+
=== Problem 12: $\dot H$ ===
 
Prove that in the case of spatially flat Universe
 
Prove that in the case of spatially flat Universe
 
\[\dot{H} = - 4\pi G (\rho + p).\]
 
\[\dot{H} = - 4\pi G (\rho + p).\]
Line 146: Line 244:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As $H = \frac{\dot a}{a}$, we have
 +
$\dot H = \frac{\ddot a}{a} - {H^2}$. Plugging the Friedman equation into the right hand side, we get the required equality.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ36"></div>
+
 
=== Problem 13. ===
+
<div id="equ36"></div><div style="border: 1px solid #AAA; padding:5px;">
Obtain the Raychadhuri equation
+
=== Problem 13: Raychaudhuri equation ===
 +
Obtain the Raychaudhuri equation
 
\[H^2 + \dot H =  - \frac{4\pi G}{3}(\rho  + 3p).\]
 
\[H^2 + \dot H =  - \frac{4\pi G}{3}(\rho  + 3p).\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The required result is obtained by straightforward plugging of the second Friedman equations into $\frac{\ddot a}{a} = H^2 + \dot H$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ37"></div>
+
 
=== Problem 14. ===
+
<div id="equ37"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14: conservation equation ===
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
\[\dot{\rho}+3H(\rho+p)=0.\]
 
\[\dot{\rho}+3H(\rho+p)=0.\]
Line 173: Line 274:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">First, we rewrite the first Friedman equation in the form
 +
\[\dot a^2 = \frac{8\pi G}{3}\rho a^2 - k.\]
 +
On differentiating it with respect to time, we get
 +
\[ 2\dot a\ddot a
 +
= \frac{8\pi G}{3}\left( \dot \rho a^2
 +
+ 2a\dot a\rho  \right),\]
 +
and excluding $\ddot a$ with the help of the second Friedman equation, obtain
 +
\[\dot \rho  + 3\frac{\dot a}{a}(\rho  + p) = 0.\]
 +
Introducing the state parameter $w=p/\rho$, it is easy to rewrite it in terms of logarithms.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ68"></div>
+
 
=== Problem 15. ===
+
<div id="equ68"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 15: conservation in terms of conformal time ===
 
Obtain the conservation equation in terms of the conformal time.
 
Obtain the conservation equation in terms of the conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Let the prime denote the derivative with respect to conformal time $\eta,$ then for $i-$th component of energy density one obtains
 +
\[\rho '_i(\eta ) +
 +
3\mathcal{H}\left( 1 + w_i \right)\rho_{i} = 0.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ38"></div>
+
 
=== Problem 1. ===
+
<div id="equ38"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 16: conservation equations for the expanding Universe ===
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The energy-momentum tensor has the form: $T^{\mu}_{\nu}=diag\{\rho,- p,-p,-p\}$. The conservation law $\nabla_{\nu}T^{\mu\nu}=0$ can be rewritten in terms of Christoffel symbols as
 +
\[ 0=\nabla_{\nu}T^{\mu\nu}
 +
=\partial_{\nu}T_{\mu}^\nu
 +
- T_\alpha ^\nu \Gamma _{\mu \nu }^\alpha
 +
+ T_\mu ^\alpha \Gamma _{\alpha \nu }^\nu,\]
 +
so that after substitution [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ27|explicit expressions]] for ${\Gamma^{i}}_{jk}$, one obtains
 +
\[a^3\frac{dp}{dt}
 +
= \frac d{dt}\left[ a^3(\rho(t) + p(t))\right],\]
 +
and collecting the terms,
 +
\[\dot \rho  + 3\frac{\dot a}{a}(\rho  + p) = 0.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ46"></div>
+
 
=== Problem 1. ===
+
<div id="equ46"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 17: relations between the three equations ===
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The derivation of the conservation equation from the two Friedman equations was discussed  [[#equ37|above]]. Here we consider the following two cases: $a)$ how to obtain the second Friedman equation from the first one plus the conservation law, and $b)$ how to obtain the first Friedman equation from the second one plus the conservation law.
 +
 
 +
$a)$ We follow [[#equ37|the same derivation]], but now exclude $\dot{\rho}$ with the help of conservation law to obtain:
 +
\[\ddot{a}=-\frac{4\pi G}{3}(\rho +3p)a\]
 +
 
 +
$b)$ We use the conservation law to exclude pressure from the second Friedman equation and multiply both sides of the equation by $\dot{a}$:
 +
\[\ddot{a}\dot{a}=\frac{4\pi }{3}G\left( 2\rho a\dot{a}+\dot{\rho }{{a}^{2}} \right)\]
 +
Note that both sides of the equation are total derivatives:
 +
\[\frac{1}{2}\frac{d}{dt}{{\dot{a}}^{2}}=\frac{4\pi }{3}G\frac{d}{dt}\left( \rho {{a}^{2}} \right).\]
 +
Setting the integration constant equal to $k$ leads to
 +
\[{{\dot{a}}^{2}}=\frac{8\pi G}{3}\rho {{a}^{2}}-k.\]
 +
By rescaling of $a$ [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ57|one can always set]] $k=0,\pm1$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ_46e"></div>
+
 
=== Problem 1. ===
+
<div id="equ_46e"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18: e-foldings number ===
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
\[N(t)=\ln\frac{a(t)}{a_0}.\]
 
\[N(t)=\ln\frac{a(t)}{a_0}.\]
Line 218: Line 353:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In such variables $H=\dot{N}$, and if we additionally use the units in which $8\pi G=1$, we can bring them to
 +
\begin{align*}
 +
\rho&=3(\dot{N})^{2};\\
 +
p&=-2\ddot{N}-3(\dot{N})^{2}.
 +
\end{align*}
 +
The conservation equation is
 +
\[\dot{\rho}+3\dot{N}(\rho+p)=0\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ47"></div>
+
<div id="equ47"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1. ===
+
=== Problem 19: conservation in terms of e-foldings number ===
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">From the previous problem we see that the conservation equation can be written in the form
 +
\[\frac{d\rho }{\rho} + 3(1 + w)dN = 0.\]
 +
Thus its solution is
 +
\[\rho  = \rho _0e^{ - 3(1 + w)N}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ43"></div>
+
 
=== Problem 1. ===
+
<div id="equ43"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 20: pressure in terms of H ===
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Excluding density $\rho$ from the Friedman equations, we obtain
 +
\[H^{2}+2\frac{\ddot{a}}{a}=-8\pi G \,p.\]
 +
Taking into account that $\dot{H}=\frac{\ddot{a}}{a}-H^2$, we have
 +
\[p =- \frac{1}{8\pi G}\left( 2\dot H + 3H^2 \right).\]</p>
 
   </div>
 
   </div>
 +
</div>
 
</div>
 
</div>
  
  
<div id="equ_duality"></div>
+
 
=== Problem 1. ===
+
 
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
+
<div id="equ44"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 21: EoS parameter in terms of H ===
 +
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the results of the previous problem, we obtain
 +
\[w = \frac{p}{\rho }
 +
=  - 1 - \frac{2}{3}\frac{\dot H}{H^2}.\]</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="equ_duality"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 22: hidden symmetry of Friedman equations ===
 +
Show that for a spatially flat Universe the Friedman equations are invariant$^*$ under the change of variables to a new scale factor
 
\[a \to \alpha=\frac{1}{a}\]
 
\[a \to \alpha=\frac{1}{a}\]
and a the new equation of state:
+
and to the new equation of state:
 
\[(w+1)\to (\omega+1)=-(w+1).\]
 
\[(w+1)\to (\omega+1)=-(w+1).\]
 +
${}^{*}$V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. [http://arxiv.org/abs/1108.2102 arXiv:1108.2102v1]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As
 +
\[\frac{\dot{\alpha}}{\alpha}=-\frac{\dot{a}}{a},\]
 +
we have the new Hubble parameter
 +
\[\mathcal{H}=\frac{\dot{\alpha}}{\alpha}=-H\]
 +
and the first equation remains unchanged.<br/>
 +
 
 +
The conservation equation can be then rewritten as
 +
\[0=\dot{\rho}+3H(1+w)\rho
 +
=\dot{\rho}+3\mathcal{H}(1+\omega)\rho,\]
 +
and thus is invariant too.<br/>
 +
 
 +
Then the remaining equation, which [[#equ46|can be derived from these two]], is also unchanged.<br/>
 +
 
 +
This ''duality'' maps expanding universes into contracting ones (filled with somewhat peculiar matter) and vice-versa.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
 +
 
 +
 
 +
 
 +
<div id="equ68n"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 23: relation between the total pressure and the deceleration parameter ===
 +
Find the relation between the total pressure and the deceleration parameter for a flat Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">From the conservation equation follows that \[p =  - \frac{\dot \rho }{3H}\frac{w}{1 + w}.\] Using
 +
\[\begin{array}{l}
 +
w = \frac{2q - 1}{3}; \\
 +
\dot \rho  = \frac{3}{4\pi G}H\dot H,\quad \dot H =  - H^2 (1 + q) \\
 +
\end{array}\] find $$p = \frac{H^2 }{8\pi G}\left( {2q - 1} \right)$$</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
  
 +
<div id="equ68n"></div><div style="border: 1px solid #AAA; padding:5px;">
  
<div id="equ68n"></div>
+
=== Problem 24: evolution of the state parameter ===
=== Problem 1. ===
+
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Note that
 +
\[\dot{w}
 +
=\frac{d}{dt}\left( \frac{p}{\rho } \right)
 +
=\frac{\dot{p}\rho -p\dot{\rho }}{\rho ^2}
 +
=\frac{p}{\rho }\;
 +
\frac{\dot{\rho}}{\rho }\;
 +
\left( \frac{\dot{p}}{\dot{\rho}}
 +
\frac{\rho }{p}-1 \right).\]
 +
Using the definition of the adiabatic velocity of sound
 +
\[c_{s}^{2}=\frac{dp}{d\rho }
 +
=\frac{\dot{p}}{\dot{\rho }}\]
 +
and the conservation equation in the form
 +
\[\frac{{\dot{\rho }}}{\rho }=-3H(1+w),\]
 +
we obtain
 +
\[\dot{w}=3H(w+1)\left( w-c_{s}^{2} \right).\]
 +
 
 +
From $\dot{w}=w'/a$ and $H=\mathcal{H}/a$ it is easy to come to
 +
\[w'=3\mathcal{H}(w+1)(w-c_{s}^{2}).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ44_1"></div>
+
 
=== Problem 1. ===
+
<div id="equ44_1"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 25: EoS via the expansion dynamics ===
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Including the curvature term in total density, we have (see [[#equ43|the problem on pressure in terms of H]])
 +
\[\rho_\mathrm{total}
 +
= \frac{3}{\kappa^2}H^2,
 +
\quad p_\mathrm{total}=-\frac{1}{\kappa^2}
 +
\left(2\dot H + 3H^2\right),\]
 +
where $\kappa^2 = 8\pi G$. Then from the first Friedman equation $H^2=\frac{\kappa^2}{3}\rho$
 +
\[p=-\rho -\frac{2}{\kappa^2}
 +
\frac{d}{d\ln a}
 +
f'\left(f^{-1}\left(
 +
\kappa\sqrt{\frac{\rho}{3}}\right)\right).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ45"></div>
+
 
=== Problem 1. ===
+
<div id="equ45"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 26: upper bound on w ===
 
Find the upper bound for the state parameter $w$.
 
Find the upper bound for the state parameter $w$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Assuming that pressure $p$ depends only on density $\rho$ (the medium is barotropic), the velocity of sound in the liquid equals to:
 +
$$ c_s^2 = \frac{dp}{d\rho }.$$
 +
Due to the causality condition $c_s^2 = w \le 1$ (note that we use units with $c = 1$).</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
 
<div id="equ52"></div>
 
<div id="equ52"></div>
=== Problem 1. ===
+
<div style="border: 1px solid #AAA; padding:5px;">
Show that for non-relativistic particles the state parameter $w$ is much less unity.
+
=== Problem 27: non-relativistic state parameter ===
 +
Show that for non-relativistic particles the state parameter $w$ is much less than unity.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">For non-relativistic gas
 +
\[p=nkT=\frac{p}{mc^2}\cdot
 +
\frac{m\left<v^2\right>}{3}
 +
=\rho \frac{\left<v^2\right>}{3 c^2},\]
 +
so
 +
\[w=\frac{p}{\rho}
 +
=\frac{\left<v^2\right>}{3 c^2}\ll 1.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
 +
 
 +
 
 +
 
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 28: condition $\dot X = 0$ ===
 +
The Friedman equation can be regarded as a constraint of the form
 +
\[
 +
X \equiv H^2  + \frac{k}{a^2} - \frac{8\pi G}{3}\rho  = 0
 +
\]
 +
Show that the conservation equation $\dot \rho  + 3H(\rho  + p)$ represents the condition $\dot X = 0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[
 +
\dot X = 2H\left( {\dot H - \frac{k}{a^2}} \right) - \frac{8\pi G}{3}\dot \rho
 +
\]
 +
Using
 +
\[\dot H = \frac{k}{a^2} - 4\pi G\left( {\rho  + p} \right),\]
 +
one obtains
 +
\[\dot X = \dot \rho  + 3H\left( {\rho  + p} \right) = 0.\]
 +
</p>
 +
  </div>
 +
</div></div>

Latest revision as of 23:33, 8 January 2013

Problem 1: derivation of Friedman equations

Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations: \begin{align}\label{FriedmanEqI} \Big(\frac{\dot a}{a}\Big)^2& =\; \frac{8\pi G}{3}\rho -\frac{k}{a^2};\\ \label{FriedmanEqII} \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p). \end{align} Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$.


Problem 2: reformulation in terms of conformal time

Derive the Friedman equations in terms of conformal time.


Problem 3: relations between equations

Show that the first Friedman equation is the first integral of the second one.


Problem 4: source of gravity in GR in the weak field limit

Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.


Problem 5: expansion and pressure

How does the magnitude of pressure affect the expansion rate?


Problem 6: second equation for $k=0$

Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form \[HH' = - 4\pi G\left(\rho + p\right),\] where $H' \equiv \frac{dH}{d\ln a}.$


Problem 7: Lorentz invariance

Are solutions of Friedman equations Lorentz-invariant?


Problem 8: critical density

The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.


Problem 9: relative densities

Show that the first Friedman equation can be presented in the form \[\sum\limits_i\Omega_i=1,\] where $\Omega_i$ are relative densities of the components, \[\Omega_i\equiv\frac{\rho_{i}}{\rho_{cr}}, \quad \rho_{cr}=\frac{3H^{2}}{8\pi G}, \quad \rho_{curv}=-\frac{3}{8\pi G}\frac{k}{a^2},\] and $\rho_{curv}$ describes the contribution to the total density of the spatial curvature.


Problem 10: scale factor via observables

Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.


Problem 11: Newtonian interpretation

Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.


Problem 12: $\dot H$

Prove that in the case of spatially flat Universe \[\dot{H} = - 4\pi G (\rho + p).\]


Problem 13: Raychaudhuri equation

Obtain the Raychaudhuri equation \[H^2 + \dot H = - \frac{4\pi G}{3}(\rho + 3p).\]


Problem 14: conservation equation

Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe: \[\dot{\rho}+3H(\rho+p)=0.\] Show that it can be presented in the form \[\frac{d\ln\rho}{d\ln a}+3(1+w)=0,\] where $w=p/\rho$ is the state parameter for matter.


Problem 15: conservation in terms of conformal time

Obtain the conservation equation in terms of the conformal time.


Problem 16: conservation equations for the expanding Universe

Starting from the energy momentum conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.


Problem 17: relations between the three equations

Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.


Problem 18: e-foldings number

For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor \[N(t)=\ln\frac{a(t)}{a_0}.\]


Problem 19: conservation in terms of e-foldings number

Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.


Problem 20: pressure in terms of H

For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.



Problem 21: EoS parameter in terms of H

Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.


Problem 22: hidden symmetry of Friedman equations

Show that for a spatially flat Universe the Friedman equations are invariant$^*$ under the change of variables to a new scale factor \[a \to \alpha=\frac{1}{a}\] and to the new equation of state: \[(w+1)\to (\omega+1)=-(w+1).\] ${}^{*}$V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1



Problem 23: relation between the total pressure and the deceleration parameter

Find the relation between the total pressure and the deceleration parameter for a flat Universe.



Problem 24: evolution of the state parameter

Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.


Problem 25: EoS via the expansion dynamics

Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.


Problem 26: upper bound on w

Find the upper bound for the state parameter $w$.


Problem 27: non-relativistic state parameter

Show that for non-relativistic particles the state parameter $w$ is much less than unity.



Problem 28: condition $\dot X = 0$

The Friedman equation can be regarded as a constraint of the form \[ X \equiv H^2 + \frac{k}{a^2} - \frac{8\pi G}{3}\rho = 0 \] Show that the conservation equation $\dot \rho + 3H(\rho + p)$ represents the condition $\dot X = 0$.