Difference between revisions of "Friedman equations"

From Universe in Problems
Jump to: navigation, search
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:Dynamics of the Expanding Universe|5]]
 
[[Category:Dynamics of the Expanding Universe|5]]
__NOTOC__
+
__TOC__
 
<div id="equ29"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ29"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1. ===
+
=== Problem 1: derivation of Friedman equations ===
 
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
 
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
 
\begin{align}\label{FriedmanEqI}
 
\begin{align}\label{FriedmanEqI}
Line 10: Line 10:
 
     \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p).
 
     \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p).
 
\end{align}
 
\end{align}
Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$ ([[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|see problem]]).
+
Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 18: Line 18:
 
= 8\pi G\left( T^\mu_\nu
 
= 8\pi G\left( T^\mu_\nu
 
- \frac{1}{2}\delta _\nu ^\mu T \right).\]
 
- \frac{1}{2}\delta _\nu ^\mu T \right).\]
Using the results of problems [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ28|this]], [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ28n|this]] and [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|this]], one obtains from the component $\binom{0}{0}$ the following equation:
+
Using the [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ28|explicit expressions for the Ricci tensor components of of the FLRW metric]], one obtains from the component $\binom{0}{0}$ the following equation:
\[ - 3\frac{{\ddot a}}{a}
+
\[ - 3\frac{\ddot a}{a}
 
= 8\pi G \cdot \frac{1}{2}(\rho  + 3p),\]
 
= 8\pi G \cdot \frac{1}{2}(\rho  + 3p),\]
 
and from the $\binom{1}{1}$ component
 
and from the $\binom{1}{1}$ component
Line 28: Line 28:
 
Excluding the second derivative from the two independent equations one obtains the first Friedman equation, and on excluding the first derivative --- the second Friedman equation.
 
Excluding the second derivative from the two independent equations one obtains the first Friedman equation, and on excluding the first derivative --- the second Friedman equation.
  
$^*$This is why the stress-energy tensor was taken in the form of stress-energy tensor of ideal fluid; otherwise we would have come to contradiction. More on this see in [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|problem ]].
+
$^*$This is why the stress-energy tensor was taken in the form of stress-energy tensor of ideal fluid; otherwise we would have come to contradiction. More on this see in [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|the problem on cosmological energy-momentum tensor]].
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 36: Line 36:
  
 
<div id="equ66"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ66"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2. ===
+
 
 +
=== Problem 2: reformulation in terms of conformal time ===
 
Derive the Friedman equations in terms of conformal time.
 
Derive the Friedman equations in terms of conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 72: Line 73:
  
 
<div id="equ40"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ40"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3. ===
+
=== Problem 3: relations between equations ===
 
Show that the first Friedman equation is the first integral of the second one.
 
Show that the first Friedman equation is the first integral of the second one.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
  
 
<div id="equ53"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ53"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4. ===
+
=== Problem 4: source of gravity in GR in the weak field limit ===
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 120: Line 121:
  
 
<div id="equ54"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ54"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5. ===
+
=== Problem 5: expansion and pressure ===
 
How does the magnitude of pressure affect the expansion rate?
 
How does the magnitude of pressure affect the expansion rate?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 132: Line 133:
  
 
<div id="equ41"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ41"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6. ===
+
=== Problem 6: second equation for $k=0$ ===
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
\[HH' =  - 4\pi G\left(\rho  + p\right),\]
 
\[HH' =  - 4\pi G\left(\rho  + p\right),\]
Line 154: Line 155:
  
 
<div id="equ29nn"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ29nn"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7. ===
+
=== Problem 7: Lorentz invariance ===
 
Are solutions of Friedman equations Lorentz-invariant?
 
Are solutions of Friedman equations Lorentz-invariant?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 166: Line 167:
  
 
<div id="equ31"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ31"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8. ===
+
=== Problem 8: critical density ===
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 184: Line 185:
 
<div id="equ33"></div>
 
<div id="equ33"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9. ===
+
=== Problem 9: relative densities ===
 
Show that the first Friedman equation can be presented in the form
 
Show that the first Friedman equation can be presented in the form
 
\[\sum\limits_i\Omega_i=1,\]
 
\[\sum\limits_i\Omega_i=1,\]
Line 210: Line 211:
  
 
<div id="equ34n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ34n"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10. ===
+
=== Problem 10: scale factor via observables ===
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 225: Line 226:
  
 
<div id="equ34"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ34"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11. ===
+
=== Problem 11: Newtonian interpretation ===
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div> --></div>
  
  
  
 
<div id="equ35"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ35"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12. ===
+
=== Problem 12: $\dot H$ ===
 
Prove that in the case of spatially flat Universe
 
Prove that in the case of spatially flat Universe
 
\[\dot{H} = - 4\pi G (\rho + p).\]
 
\[\dot{H} = - 4\pi G (\rho + p).\]
Line 251: Line 252:
  
 
<div id="equ36"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ36"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13. ===
+
=== Problem 13: Raychaudhuri equation ===
Obtain the Raychadhuri equation
+
Obtain the Raychaudhuri equation
 
\[H^2 + \dot H =  - \frac{4\pi G}{3}(\rho  + 3p).\]
 
\[H^2 + \dot H =  - \frac{4\pi G}{3}(\rho  + 3p).\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 264: Line 265:
  
 
<div id="equ37"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ37"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14. ===
+
=== Problem 14: conservation equation ===
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
\[\dot{\rho}+3H(\rho+p)=0.\]
 
\[\dot{\rho}+3H(\rho+p)=0.\]
Line 288: Line 289:
  
 
<div id="equ68"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ68"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15. ===
+
=== Problem 15: conservation in terms of conformal time ===
 
Obtain the conservation equation in terms of the conformal time.
 
Obtain the conservation equation in terms of the conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 302: Line 303:
  
 
<div id="equ38"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ38"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 16. ===
+
=== Problem 16: conservation equations for the expanding Universe ===
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 312: Line 313:
 
- T_\alpha ^\nu \Gamma _{\mu \nu }^\alpha
 
- T_\alpha ^\nu \Gamma _{\mu \nu }^\alpha
 
+ T_\mu ^\alpha \Gamma _{\alpha \nu }^\nu,\]
 
+ T_\mu ^\alpha \Gamma _{\alpha \nu }^\nu,\]
so that after substitution of explicit expressions for ${\Gamma^{i}}_{jk}$, obtained in [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ27|problem]], one obtains
+
so that after substitution [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ27|explicit expressions]] for ${\Gamma^{i}}_{jk}$, one obtains
 
\[a^3\frac{dp}{dt}
 
\[a^3\frac{dp}{dt}
 
= \frac d{dt}\left[ a^3(\rho(t) + p(t))\right],\]
 
= \frac d{dt}\left[ a^3(\rho(t) + p(t))\right],\]
 
and collecting the terms,
 
and collecting the terms,
\[\dot \rho  + 3\frac{{\dot a}}{a}(\rho  + p) = 0.\]</p>
+
\[\dot \rho  + 3\frac{\dot a}{a}(\rho  + p) = 0.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 323: Line 324:
  
 
<div id="equ46"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ46"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 17. ===
+
=== Problem 17: relations between the three equations ===
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">The derivation of the conservation equation from the two Friedman equations is discussed in [[#equ37|problem]]. Here we consider the following two cases: $a)$ how to obtain the second Friedman equation from the first one plus the conservation law, and $b)$ how to obtain the first Friedman equation from the second one plus the conservation law.
+
     <p style="text-align: left;">The derivation of the conservation equation from the two Friedman equations was discussed [[#equ37|above]]. Here we consider the following two cases: $a)$ how to obtain the second Friedman equation from the first one plus the conservation law, and $b)$ how to obtain the first Friedman equation from the second one plus the conservation law.
  
$a)$ We follow the idea of [[#equ37|problem]], but now exclude $\dot{\rho }$ with the help of conservation law to obtain:
+
$a)$ We follow [[#equ37|the same derivation]], but now exclude $\dot{\rho}$ with the help of conservation law to obtain:
 
\[\ddot{a}=-\frac{4\pi G}{3}(\rho +3p)a\]
 
\[\ddot{a}=-\frac{4\pi G}{3}(\rho +3p)a\]
  
Line 339: Line 340:
 
Setting the integration constant equal to $k$ leads to
 
Setting the integration constant equal to $k$ leads to
 
\[{{\dot{a}}^{2}}=\frac{8\pi G}{3}\rho {{a}^{2}}-k.\]
 
\[{{\dot{a}}^{2}}=\frac{8\pi G}{3}\rho {{a}^{2}}-k.\]
By rescaling of $a$ one can always set $k=0,\pm1$ (see [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ57|problem]]).</p>
+
By rescaling of $a$ [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ57|one can always set]] $k=0,\pm1$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 346: Line 347:
  
 
<div id="equ_46e"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ_46e"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18. ===
+
=== Problem 18: e-foldings number ===
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
\[N(t)=\ln\frac{a(t)}{a_0}.\]
 
\[N(t)=\ln\frac{a(t)}{a_0}.\]
Line 365: Line 366:
  
 
<div id="equ47"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ47"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 19. ===
+
=== Problem 19: conservation in terms of e-foldings number ===
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 380: Line 381:
  
 
<div id="equ43"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ43"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 20. ===
+
=== Problem 20: pressure in terms of H ===
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 397: Line 398:
  
 
<div id="equ44"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ44"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 21. ===
+
=== Problem 21: EoS parameter in terms of H ===
 
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 411: Line 412:
  
 
<div id="equ_duality"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ_duality"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 22. ===
+
=== Problem 22: hidden symmetry of Friedman equations ===
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
+
Show that for a spatially flat Universe the Friedman equations are invariant$^*$ under the change of variables to a new scale factor
 
\[a \to \alpha=\frac{1}{a}\]
 
\[a \to \alpha=\frac{1}{a}\]
and a the new equation of state:
+
and to the new equation of state:
 
\[(w+1)\to (\omega+1)=-(w+1).\]
 
\[(w+1)\to (\omega+1)=-(w+1).\]
 +
${}^{*}$V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. [http://arxiv.org/abs/1108.2102 arXiv:1108.2102v1]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 423: Line 425:
 
we have the new Hubble parameter
 
we have the new Hubble parameter
 
\[\mathcal{H}=\frac{\dot{\alpha}}{\alpha}=-H\]
 
\[\mathcal{H}=\frac{\dot{\alpha}}{\alpha}=-H\]
and the first equation remains unchanged.
+
and the first equation remains unchanged.<br/>
  
 
The conservation equation can be then rewritten as
 
The conservation equation can be then rewritten as
 
\[0=\dot{\rho}+3H(1+w)\rho
 
\[0=\dot{\rho}+3H(1+w)\rho
 
=\dot{\rho}+3\mathcal{H}(1+\omega)\rho,\]
 
=\dot{\rho}+3\mathcal{H}(1+\omega)\rho,\]
and thus is invariant too.
+
and thus is invariant too.<br/>
  
Then the remaining equation, which can be derived from these two (see [[#equ46|problem]]) is also unchanged.
+
Then the remaining equation, which [[#equ46|can be derived from these two]], is also unchanged.<br/>
  
 
This ''duality'' maps expanding universes into contracting ones (filled with somewhat peculiar matter) and vice-versa.</p>
 
This ''duality'' maps expanding universes into contracting ones (filled with somewhat peculiar matter) and vice-versa.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
  
 
<div id="equ68n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ68n"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 23. ===
+
=== Problem 23: relation between the total pressure and the deceleration parameter ===
 +
Find the relation between the total pressure and the deceleration parameter for a flat Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">From the conservation equation follows that \[p =  - \frac{\dot \rho }{3H}\frac{w}{1 + w}.\] Using
 +
\[\begin{array}{l}
 +
w = \frac{2q - 1}{3}; \\
 +
\dot \rho  = \frac{3}{4\pi G}H\dot H,\quad \dot H =  - H^2 (1 + q) \\
 +
\end{array}\] find $$p = \frac{H^2 }{8\pi G}\left( {2q - 1} \right)$$</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
 
 +
<div id="equ68n"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
 
 +
=== Problem 24: evolution of the state parameter ===
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 468: Line 489:
  
 
<div id="equ44_1"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ44_1"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 24. ===
+
=== Problem 25: EoS via the expansion dynamics ===
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Including the curvature term in total density, we have (see [[#equ43|problem]])
+
     <p style="text-align: left;">Including the curvature term in total density, we have (see [[#equ43|the problem on pressure in terms of H]])
 
\[\rho_\mathrm{total}
 
\[\rho_\mathrm{total}
 
= \frac{3}{\kappa^2}H^2,
 
= \frac{3}{\kappa^2}H^2,
Line 489: Line 510:
  
 
<div id="equ45"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ45"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 25. ===
+
=== Problem 26: upper bound on w ===
 
Find the upper bound for the state parameter $w$.
 
Find the upper bound for the state parameter $w$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 504: Line 525:
 
<div id="equ52"></div>
 
<div id="equ52"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 26. ===
+
=== Problem 27: non-relativistic state parameter ===
Show that for non-relativistic particles the state parameter $w$ is much less unity.
+
Show that for non-relativistic particles the state parameter $w$ is much less than unity.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">For a non-relativistic gas
+
     <p style="text-align: left;">For non-relativistic gas
 
\[p=nkT=\frac{p}{mc^2}\cdot
 
\[p=nkT=\frac{p}{mc^2}\cdot
 
\frac{m\left<v^2\right>}{3}
 
\frac{m\left<v^2\right>}{3}
Line 516: Line 537:
 
\[w=\frac{p}{\rho}
 
\[w=\frac{p}{\rho}
 
=\frac{\left<v^2\right>}{3 c^2}\ll 1.\]</p>
 
=\frac{\left<v^2\right>}{3 c^2}\ll 1.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 28: condition $\dot X = 0$ ===
 +
The Friedman equation can be regarded as a constraint of the form
 +
\[
 +
X \equiv H^2  + \frac{k}{a^2} - \frac{8\pi G}{3}\rho  = 0
 +
\]
 +
Show that the conservation equation $\dot \rho  + 3H(\rho  + p)$ represents the condition $\dot X = 0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[
 +
\dot X = 2H\left( {\dot H - \frac{k}{a^2}} \right) - \frac{8\pi G}{3}\dot \rho
 +
\]
 +
Using
 +
\[\dot H = \frac{k}{a^2} - 4\pi G\left( {\rho  + p} \right),\]
 +
one obtains
 +
\[\dot X = \dot \rho  + 3H\left( {\rho  + p} \right) = 0.\]
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 23:33, 8 January 2013

Problem 1: derivation of Friedman equations

Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations: \begin{align}\label{FriedmanEqI} \Big(\frac{\dot a}{a}\Big)^2& =\; \frac{8\pi G}{3}\rho -\frac{k}{a^2};\\ \label{FriedmanEqII} \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p). \end{align} Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$.


Problem 2: reformulation in terms of conformal time

Derive the Friedman equations in terms of conformal time.


Problem 3: relations between equations

Show that the first Friedman equation is the first integral of the second one.


Problem 4: source of gravity in GR in the weak field limit

Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.


Problem 5: expansion and pressure

How does the magnitude of pressure affect the expansion rate?


Problem 6: second equation for $k=0$

Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form \[HH' = - 4\pi G\left(\rho + p\right),\] where $H' \equiv \frac{dH}{d\ln a}.$


Problem 7: Lorentz invariance

Are solutions of Friedman equations Lorentz-invariant?


Problem 8: critical density

The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.


Problem 9: relative densities

Show that the first Friedman equation can be presented in the form \[\sum\limits_i\Omega_i=1,\] where $\Omega_i$ are relative densities of the components, \[\Omega_i\equiv\frac{\rho_{i}}{\rho_{cr}}, \quad \rho_{cr}=\frac{3H^{2}}{8\pi G}, \quad \rho_{curv}=-\frac{3}{8\pi G}\frac{k}{a^2},\] and $\rho_{curv}$ describes the contribution to the total density of the spatial curvature.


Problem 10: scale factor via observables

Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.


Problem 11: Newtonian interpretation

Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.


Problem 12: $\dot H$

Prove that in the case of spatially flat Universe \[\dot{H} = - 4\pi G (\rho + p).\]


Problem 13: Raychaudhuri equation

Obtain the Raychaudhuri equation \[H^2 + \dot H = - \frac{4\pi G}{3}(\rho + 3p).\]


Problem 14: conservation equation

Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe: \[\dot{\rho}+3H(\rho+p)=0.\] Show that it can be presented in the form \[\frac{d\ln\rho}{d\ln a}+3(1+w)=0,\] where $w=p/\rho$ is the state parameter for matter.


Problem 15: conservation in terms of conformal time

Obtain the conservation equation in terms of the conformal time.


Problem 16: conservation equations for the expanding Universe

Starting from the energy momentum conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.


Problem 17: relations between the three equations

Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.


Problem 18: e-foldings number

For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor \[N(t)=\ln\frac{a(t)}{a_0}.\]


Problem 19: conservation in terms of e-foldings number

Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.


Problem 20: pressure in terms of H

For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.



Problem 21: EoS parameter in terms of H

Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.


Problem 22: hidden symmetry of Friedman equations

Show that for a spatially flat Universe the Friedman equations are invariant$^*$ under the change of variables to a new scale factor \[a \to \alpha=\frac{1}{a}\] and to the new equation of state: \[(w+1)\to (\omega+1)=-(w+1).\] ${}^{*}$V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1



Problem 23: relation between the total pressure and the deceleration parameter

Find the relation between the total pressure and the deceleration parameter for a flat Universe.



Problem 24: evolution of the state parameter

Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.


Problem 25: EoS via the expansion dynamics

Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.


Problem 26: upper bound on w

Find the upper bound for the state parameter $w$.


Problem 27: non-relativistic state parameter

Show that for non-relativistic particles the state parameter $w$ is much less than unity.



Problem 28: condition $\dot X = 0$

The Friedman equation can be regarded as a constraint of the form \[ X \equiv H^2 + \frac{k}{a^2} - \frac{8\pi G}{3}\rho = 0 \] Show that the conservation equation $\dot \rho + 3H(\rho + p)$ represents the condition $\dot X = 0$.