Difference between revisions of "Friedman equations"

From Universe in Problems
Jump to: navigation, search
Line 5: Line 5:
 
<div id="equ29"></div>
 
<div id="equ29"></div>
 
=== Problem 1. ===
 
=== Problem 1. ===
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric---the Friedman equations:
+
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
 
\begin{align}\label{FriedmanEqI}
 
\begin{align}\label{FriedmanEqI}
 
     \Big(\frac{\dot a}{a}\Big)^2& =\;
 
     \Big(\frac{\dot a}{a}\Big)^2& =\;
Line 16: Line 16:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;"> It is convenient to use the Einstein equations in the form
 +
\[R^\mu_\nu
 +
= 8\pi G\left( T^\mu_\nu
 +
- \frac{1}{2}\delta _\nu ^\mu T \right).\]
 +
Using the results of problems [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ28|this]], [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ28n|this]] and [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|this]], one obtains from the component $\binom{0}{0}$ the following equation:
 +
\[ - 3\frac{{\ddot a}}{a}
 +
= 8\pi G \cdot \frac{1}{2}(\rho  + 3p),\]
 +
and from the $\binom{1}{1}$ component
 +
\[- \frac{2{\dot a}^2 + a\ddot a + 2k}{a^2} =
 +
8\pi G \cdot \frac{1}{2}(p - \rho ).\]
 +
The components $\binom{2}{2}$ and $\binom{3}{3}$ give the same equations as  $\binom{1}{1}$, and the off-diagonal ones reduce to the identity$^*$ $0=0$.
 +
 
 +
Excluding the second derivative from the two independent equations one obtains the first Friedman equation, and on excluding the first derivative --- the second Friedman equation.
 +
 
 +
$^*$This is why the stress-energy tensor was taken in the form of stress-energy tensor of ideal fluid; otherwise we would have come to contradiction. More on this see in [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ29n|problem ]].
 +
</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 27: Line 42:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In order to rewrite the Friedman equations in terms of conformal time $dt=a(\eta)d\eta$, we note that
 +
\[\frac{d}{dt}
 +
=\frac{d\eta}{dt}\frac{d}{d\eta}
 +
=\frac{1}{a}\frac{d}{d\eta},\]
 +
and therefore
 +
\[\left(\frac{\dot{a}}{a}\right)^2
 +
=\frac{1}{a^2}\left(\frac{da}{d\eta}
 +
\frac{d\eta}{dt}\right)^2
 +
=\frac{(a')^2}{a^4},\]
 +
where the prime denotes the derivative with respect to the conformal time $\eta$. Then one gets
 +
\begin{align*}
 +
\ddot{a}=&\frac{d}{dt} \frac{da}{dt}=
 +
\frac{d}{dt}\frac{da}{dt}
 +
=\frac{d}{dt}\frac{da}{d\eta}\frac{d\eta}{dt}
 +
=\frac{d}{dt}\frac{a'}{a}=\\
 +
=&\frac{d\eta}{dt}\frac{d}{d\eta}\left(
 +
\frac{a'}{a}\right)=
 +
\frac{1}{a}\left(-\frac{a'^2}{a^2}+\frac{a''}{a}\right)=
 +
-\frac{a'^2}{a^3}+\frac{a''}{a^2}.
 +
\end{align*}
 +
After substitution of the derivatives into the Friedman equations one obtains the latter in the conformal time:
 +
\begin{align*}
 +
& (a')^2 +ka^2=\frac{8\pi G}{3}\rho a^4,\\
 +
&a'' +ka=\frac{4\pi G}{3}\left(\rho-3p\right)a^3.
 +
\end{align*}</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 49: Line 88:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The density distribution $\rho$ enters the Poisson equation $\Delta \Phi  = 4\pi G\rho$ and serves as the source of gravitational field in the Newtonian theory. In order to obtain the analogue of this equation in the frame of General Relativity, consider the Newtonian approximation of the Einstein theory: let $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$, where $h_{\mu\nu}$ is a small perturbation to the Minkowski metric $\eta_{\mu\nu}$. In this limit $h_{00}=1+2\Phi$, where $\Phi$ is the Newtonian gravitational potential. Then we linearize the Einstein equations
 +
\[R_{\mu \nu } =
 +
8\pi G\left( T_{\mu \nu } -
 +
\frac{1}{2}Tg_{\mu \nu } \right)\]
 +
with respect to $h_{\mu\nu}$.
 +
 
 +
In the first order of approximation we can neglect terms quadratic on $\Gamma$ in the Ricci tensor
 +
\begin{equation}\label{2-53}
 +
    R_{\nu \sigma } =
 +
\Gamma _{\nu \sigma ,\mu }^\mu
 +
-\Gamma _{\nu \mu ,\sigma }^\mu  +
 +
\Gamma _{\nu \sigma }^\alpha
 +
\Gamma _{\alpha \mu }^\mu
 +
-\Gamma _{\nu \mu }^\alpha
 +
\Gamma _{\alpha \sigma}^\mu,
 +
\end{equation}
 +
Also, for stationary metrics the second term in the $00$ component equals to zero, so
 +
\[R_{00} = \partial _\alpha \Gamma _{00}^\alpha=
 +
\frac{1}{2}\Delta g_{00} = \Delta \Phi.\]
 +
It is easy to see that $T_{\mu \nu }$ is of the first order of smallness with respect to $\Phi$, so from the $00$ component of the Einstein equation we obtain
 +
\[\Delta \Phi
 +
= 8\pi G\left( T_{00} - \frac{1}{2}T \right)
 +
= 8\pi G\left( \rho  - \frac{1}{2}(\rho  - 3p) \right)
 +
= 4\pi G(\rho  +3p).\]
 +
Therefore the source of gravitational field is not $\rho$, but the combination $\rho  + 3p$. In particular, an object satisfying the condition $\rho + 3p < 0$, will repel, rather than attract, non-relativistic particles.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 60: Line 123:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The increase of positive pressure leads to additional deceleration of expansion of the Universe. It absolutely contradicts our intuitive conceptions: strongly pressured substance expands. However, cosmological medium with positive pressure acts in the opposite way. Our intuition fails because force is determined by the gradient of pressure, and in the uniform medium (such as our Universe on the considered scales) there are no gradients of pressure. The pressure term in the second Friedman equation is a purely relativistic effect, that can only be described by General Relativity.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 73: Line 136:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">First of all,
 +
\[\dot{H}=\frac{\ddot a}{a}-{H^2},\]
 +
so it follows from the Friedman equations that
 +
\[\dot H =
 +
- \frac{4\pi G}{3}\left( \rho  + 3p\right) -
 +
\frac{8\pi G}{3}\rho
 +
=- 4\pi G(\rho  + p).\]
 +
On the other hand, $\dot H = H'H$, and one obtains the first Friedman equation in the required form
 +
\[H'H =  - 4\pi G(\rho  + p).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 84: Line 155:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Solution of the Friedman equations violate the Lorentz invariance. In a Friedmannian Universe there is a selected cosmological time $t,$  which is the proper time of the comoving observer, who sees the spatially homogeneous and isotropic Universe. The situation is typical for physics: equations of General relativity are invariant with respect to Lorentz transformations, but particular solutions of the equations are in general not.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 95: Line 166:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Spatial flatness means $k=0$. Then making use of the definition
 +
\[H=\frac{\dot a }a,
 +
\quad H_0^2 = \frac{{8\pi G}}{3}{\rho_{cr0}},\]
 +
where $H_0$ is the present value of Hubble's parameter, we obtain from the first Friedman equation
 +
\[{\rho_{cr0}} = \frac{{3H_0^2}}{{8\pi G}}
 +
\approx 1.12 \cdot {10^{ - 29}}\mbox{\it g/cm}^3\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 112: Line 188:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation reads
 +
\[H^2 = \frac{8\pi G}{3}\sum\limits_i
 +
{\rho _i}  - \frac{k}{a^2},\]
 +
where $\sum\limits_i \rho _i$ is the total density of all components contributing to the Universe' composition. Then
 +
\[1 = \sum\limits_i \frac{8\pi G}{3H^2}
 +
\left( \rho _i - \frac{3}{8\pi G}\frac{k}{a^2} \right)
 +
= \sum\limits_i \frac{8\pi G}{3H^2}\left(
 +
\rho _i + \rho _{curv} \right)
 +
= \sum\limits_i \Omega_i .\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 123: Line 207:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Extracting the curvature term from the Friedman equations. we can write
 +
\[\Omega=1+\frac{k}{a^2 H^2},\]
 +
so
 +
\[a= \frac{H^{-1}}{\big|\Omega- 1\big|^{1/2}}.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 146: Line 233:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As $H = \frac{\dot a}{a}$, we have
 +
$\dot H = \frac{\ddot a}{a} - {H^2}$. Plugging the Friedman equation into the right hand side, we get the required equality.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 158: Line 246:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The required result is obtained by straightforward plugging of the second Friedman equations into $\frac{\ddot a}{a} = H^2 + \dot H$.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 173: Line 261:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">First, we rewrite the first Friedman equation in the form
 +
\[\dot a^2 = \frac{8\pi G}{3}\rho a^2 - k.\]
 +
On differentiating it with respect to time, we get
 +
\[ 2\dot a\ddot a
 +
= \frac{8\pi G}{3}\left( \dot \rho a^2
 +
+ 2a\dot a\rho  \right),\]
 +
and excluding $\ddot a$ with the help of the second Friedman equation, obtain
 +
\[\dot \rho  + 3\frac{\dot a}{a}(\rho  + p) = 0.\]
 +
Introducing the state parameter $w=p/\rho$, it is easy to rewrite it in terms of logarithms.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 184: Line 280:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Let the prime denote the derivative with respect to conformal time $\eta,$ then for $i-$th component of energy density one obtains
 +
\[\rho '_i(\eta ) +
 +
3\mathcal{H}\left( 1 + w_i \right)\rho_{i} = 0.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 195: Line 293:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The energy-momentum tensor has the form: $T^{\mu}_{\nu}=diag\{\rho,- p,-p,-p\}$. The conservation law $\nabla_{\nu}T^{\mu\nu}=0$ can be rewritten in terms of Christoffel symbols as
 +
\[ 0=\nabla_{\nu}T^{\mu\nu}
 +
=\partial_{\nu}T_{\mu}^\nu
 +
- T_\alpha ^\nu \Gamma _{\mu \nu }^\alpha
 +
+ T_\mu ^\alpha \Gamma _{\alpha \nu }^\nu,\]
 +
so that after substitution of explicit expressions for ${\Gamma^{i}}_{jk}$, obtained in [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ27|problem]], one obtains
 +
\[a^3\frac{dp}{dt}
 +
= \frac d{dt}\left[ a^3(\rho(t) + p(t))\right],\]
 +
and collecting the terms,
 +
\[\dot \rho  + 3\frac{{\dot a}}{a}(\rho  + p) = 0.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 206: Line 313:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The derivation of the conservation equation from the two Friedman equations is discussed in [[#equ37|problem]]. Here we consider the following two cases: $a)$ how to obtain the second Friedman equation from the first one plus the conservation law, and $b)$ how to obtain the first Friedman equation from the second one plus the conservation law.
 +
 
 +
$a)$ We follow the idea of [[#equ37|problem]], but now exclude $\dot{\rho }$ with the help of conservation law to obtain:
 +
\[\ddot{a}=-\frac{4\pi G}{3}(\rho +3p)a\]
 +
 
 +
$b)$ We use the conservation law to exclude pressure from the second Friedman equation and multiply both sides of the equation by $\dot{a}$:
 +
\[\ddot{a}\dot{a}=\frac{4\pi }{3}G\left( 2\rho a\dot{a}+\dot{\rho }{{a}^{2}} \right)\]
 +
Note that both sides of the equation are total derivatives:
 +
\[\frac{1}{2}\frac{d}{dt}{{\dot{a}}^{2}}=\frac{4\pi }{3}G\frac{d}{dt}\left( \rho {{a}^{2}} \right).\]
 +
Setting the integration constant equal to $k$ leads to
 +
\[{{\dot{a}}^{2}}=\frac{8\pi G}{3}\rho {{a}^{2}}-k.\]
 +
By rescaling of $a$ one can always set $k=0,\pm1$ (see [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ57|problem]]).</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 218: Line 336:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In such variables $H=\dot{N}$, and if we additionally use the units in which $8\pi G=1$, we can bring them to
 +
\begin{align*}
 +
\rho&=3(\dot{N})^{2};\\
 +
p&=-2\ddot{N}-3(\dot{N})^{2}.
 +
\end{align*}
 +
The conservation equation is
 +
\[\dot{\rho}+3\dot{N}(\rho+p)=0\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 229: Line 353:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">From the previous problem we see that the conservation equation can be written in the form
 +
\[\frac{d\rho }{\rho} + 3(1 + w)dN = 0.\]
 +
Thus its solution is
 +
\[\rho  = \rho _0e^{ - 3(1 + w)N}.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 240: Line 367:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Excluding density $\rho$ from the Friedman equations, we obtain
 +
\[H^{2}+2\frac{\ddot{a}}{a}=-8\pi G \,p.\]
 +
Taking into account that $\dot{H}=\frac{\ddot{a}}{a}-H^2$, we have
 +
\[p =- \frac{1}{8\pi G}\left( 2\dot H + 3H^2 \right).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
  
  
<div id="equ_duality"></div>
+
<div id="equ44"></div>
 
=== Problem 21. ===
 
=== Problem 21. ===
 +
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the results of the previous problem, we obtain
 +
\[w = \frac{p}{\rho }
 +
=  - 1 - \frac{2}{3}\frac{\dot H}{H^2}.\]</p>
 +
  </div>
 +
</div>
 +
 +
 +
<div id="equ_duality"></div>
 +
=== Problem 22. ===
 
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
 
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
 
\[a \to \alpha=\frac{1}{a}\]
 
\[a \to \alpha=\frac{1}{a}\]
Line 254: Line 397:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">As
 +
\[\frac{\dot{\alpha}}{\alpha}=-\frac{\dot{a}}{a},\]
 +
we have the new Hubble parameter
 +
\[\mathcal{H}=\frac{\dot{\alpha}}{\alpha}=-H\]
 +
and the first equation remains unchanged.
 +
 
 +
The conservation equation can be then rewritten as
 +
\[0=\dot{\rho}+3H(1+w)\rho
 +
=\dot{\rho}+3\mathcal{H}(1+\omega)\rho,\]
 +
and thus is invariant too.
 +
 
 +
Then the remaining equation, which can be derived from these two (see [[#equ46|problem]]) is also unchanged.
 +
 
 +
This ''duality'' maps expanding universes into contracting ones (filled with somewhat peculiar matter) and vice-versa.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 260: Line 416:
  
 
<div id="equ68n"></div>
 
<div id="equ68n"></div>
=== Problem 22. ===
+
=== Problem 23. ===
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Note that
 +
\[\dot{w}
 +
=\frac{d}{dt}\left( \frac{p}{\rho } \right)
 +
=\frac{\dot{p}\rho -p\dot{\rho }}{\rho ^2}
 +
=\frac{p}{\rho }\;
 +
\frac{\dot{\rho}}{\rho }\;
 +
\left( \frac{\dot{p}}{\dot{\rho}}
 +
\frac{\rho }{p}-1 \right).\]
 +
Using the definition of the adiabatic velocity of sound
 +
\[c_{s}^{2}=\frac{dp}{d\rho }
 +
=\frac{\dot{p}}{\dot{\rho }}\]
 +
and the conservation equation in the form
 +
\[\frac{{\dot{\rho }}}{\rho }=-3H(1+w),\]
 +
we obtain
 +
\[\dot{w}=3H(w+1)\left( w-c_{s}^{2} \right).\]
 +
 
 +
From $\dot{w}=w'/a$ and $H=\mathcal{H}/a$ it is easy to come to
 +
\[w'=3\mathcal{H}(w+1)(w-c_{s}^{2}).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 271: Line 444:
  
 
<div id="equ44_1"></div>
 
<div id="equ44_1"></div>
=== Problem 23. ===
+
=== Problem 24. ===
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Including the curvature term in total density, we have (see [[#equ43|problem]])
 +
\[\rho_\mathrm{total}
 +
= \frac{3}{\kappa^2}H^2,
 +
\quad p_\mathrm{total}=-\frac{1}{\kappa^2}
 +
\left(2\dot H + 3H^2\right),\]
 +
where $\kappa^2 = 8\pi G$. Then from the first Friedman equation $H^2=\frac{\kappa^2}{3}\rho$
 +
\[p=-\rho -\frac{2}{\kappa^2}
 +
\frac{d}{d\ln a}
 +
f'\left(f^{-1}\left(
 +
\kappa\sqrt{\frac{\rho}{3}}\right)\right).\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 282: Line 464:
  
 
<div id="equ45"></div>
 
<div id="equ45"></div>
=== Problem 24. ===
+
=== Problem 25. ===
 
Find the upper bound for the state parameter $w$.
 
Find the upper bound for the state parameter $w$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Assuming that pressure $p$ depends only on density $\rho$ (the medium is barotropic), the velocity of sound in the liquid equals to:
 +
$$ c_s^2 = \frac{{dp}}{{d\rho }}.$$
 +
Due to the causality condition $c_s^2 = w \le 1$ (note that we use units with $c = 1$).</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 293: Line 477:
  
 
<div id="equ52"></div>
 
<div id="equ52"></div>
=== Problem 25. ===
+
=== Problem 26. ===
 
Show that for non-relativistic particles the state parameter $w$ is much less unity.
 
Show that for non-relativistic particles the state parameter $w$ is much less unity.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">For a non-relativistic gas
 +
\[p=nkT=\frac{p}{mc^2}\cdot
 +
\frac{m\left<v^2\right>}{3}
 +
=\rho \frac{\left<v^2\right>}{3 c^2},\]
 +
so
 +
\[w=\frac{p}{\rho}
 +
=\frac{\left<v^2\right>}{3 c^2}\ll 1.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>

Revision as of 20:43, 18 June 2012


Friedman equations

Problem 1.

Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations: \begin{align}\label{FriedmanEqI} \Big(\frac{\dot a}{a}\Big)^2& =\; \frac{8\pi G}{3}\rho -\frac{k}{a^2};\\ \label{FriedmanEqII} \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p). \end{align} Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$ (see problem).


Problem 2.

Derive the Friedman equations in terms of conformal time.


Problem 3.

Show that the first Friedman equation is the first integral of the second one.


Problem 4.

Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.


Problem 5.

How does the magnitude of pressure affect the expansion rate?


Problem 6.

Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form \[HH' = - 4\pi G\left(\rho + p\right),\] where $H' \equiv \frac{dH}{d\ln a}.$


Problem 7.

Are solutions of Friedman equations Lorentz-invariant?


Problem 8.

The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.


Problem 9.

Show that the first Friedman equation can be presented in the form \[\sum\limits_i\Omega_i=1,\] where $\Omega_i$ are relative densities of the components, \[\Omega_i\equiv\frac{\rho_{i}}{\rho_{cr}}, \quad \rho_{cr}=\frac{3H^{2}}{8\pi G}, \quad \rho_{curv}=-\frac{3}{8\pi G}\frac{k}{a^2},\] and $\rho_{curv}$ describes the contribution to the total density of the spatial curvature.


Problem 10.

Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.


Problem 11.

Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.


Problem 12.

Prove that in the case of spatially flat Universe \[\dot{H} = - 4\pi G (\rho + p).\]


Problem 13.

Obtain the Raychadhuri equation \[H^2 + \dot H = - \frac{4\pi G}{3}(\rho + 3p).\]


Problem 14.

Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe: \[\dot{\rho}+3H(\rho+p)=0.\] Show that it can be presented in the form \[\frac{d\ln\rho}{d\ln a}+3(1+w)=0,\] where $w=p/\rho$ is the state parameter for matter.


Problem 15.

Obtain the conservation equation in terms of the conformal time.


Problem 16.

Starting from the energy momentum conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.


Problem 17.

Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.


Problem 18.

For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor \[N(t)=\ln\frac{a(t)}{a_0}.\]


Problem 19.

Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.


Problem 20.

For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.


Problem 21.

Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.


Problem 22.

Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor \[a \to \alpha=\frac{1}{a}\] and a the new equation of state: \[(w+1)\to (\omega+1)=-(w+1).\]


Problem 23.

Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.


Problem 24.

Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.


Problem 25.

Find the upper bound for the state parameter $w$.


Problem 26.

Show that for non-relativistic particles the state parameter $w$ is much less unity.