Difference between revisions of "Friedman equations"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Dynamics of the Expanding Universe|5]]
 
[[Category:Dynamics of the Expanding Universe|5]]
 
__NOTOC__
 
__NOTOC__
<div id="equ29"></div>
+
<div id="equ29"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1. ===
 
=== Problem 1. ===
 
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
 
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
Line 31: Line 31:
 
</p>
 
</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ66"></div>
+
<div id="equ66"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 2. ===
 
=== Problem 2. ===
 
Derive the Friedman equations in terms of conformal time.
 
Derive the Friedman equations in terms of conformal time.
Line 66: Line 67:
 
\end{align*}</p>
 
\end{align*}</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ40"></div>
+
<div id="equ40"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 3. ===
 
=== Problem 3. ===
 
Show that the first Friedman equation is the first integral of the second one.
 
Show that the first Friedman equation is the first integral of the second one.
Line 77: Line 79:
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ53"></div>
+
<div id="equ53"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 4. ===
 
=== Problem 4. ===
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
Line 112: Line 115:
 
Therefore the source of gravitational field is not $\rho$, but the combination $\rho  + 3p$. In particular, an object satisfying the condition $\rho + 3p < 0$, will repel, rather than attract, non-relativistic particles.</p>
 
Therefore the source of gravitational field is not $\rho$, but the combination $\rho  + 3p$. In particular, an object satisfying the condition $\rho + 3p < 0$, will repel, rather than attract, non-relativistic particles.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ54"></div>
+
<div id="equ54"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 5. ===
 
=== Problem 5. ===
 
How does the magnitude of pressure affect the expansion rate?
 
How does the magnitude of pressure affect the expansion rate?
Line 123: Line 127:
 
     <p style="text-align: left;">The increase of positive pressure leads to additional deceleration of expansion of the Universe. It absolutely contradicts our intuitive conceptions: strongly pressured substance expands. However, cosmological medium with positive pressure acts in the opposite way. Our intuition fails because force is determined by the gradient of pressure, and in the uniform medium (such as our Universe on the considered scales) there are no gradients of pressure. The pressure term in the second Friedman equation is a purely relativistic effect, that can only be described by General Relativity.</p>
 
     <p style="text-align: left;">The increase of positive pressure leads to additional deceleration of expansion of the Universe. It absolutely contradicts our intuitive conceptions: strongly pressured substance expands. However, cosmological medium with positive pressure acts in the opposite way. Our intuition fails because force is determined by the gradient of pressure, and in the uniform medium (such as our Universe on the considered scales) there are no gradients of pressure. The pressure term in the second Friedman equation is a purely relativistic effect, that can only be described by General Relativity.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ41"></div>
+
 
 +
<div id="equ41"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 6. ===
 
=== Problem 6. ===
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
Line 144: Line 149:
 
\[H'H =  - 4\pi G(\rho  + p).\]</p>
 
\[H'H =  - 4\pi G(\rho  + p).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ29nn"></div>
+
 
 +
<div id="equ29nn"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 7. ===
 
=== Problem 7. ===
 
Are solutions of Friedman equations Lorentz-invariant?
 
Are solutions of Friedman equations Lorentz-invariant?
Line 155: Line 161:
 
     <p style="text-align: left;">Solution of the Friedman equations violate the Lorentz invariance. In a Friedmannian Universe there is a selected cosmological time $t,$  which is the proper time of the comoving observer, who sees the spatially homogeneous and isotropic Universe. The situation is typical for physics: equations of General relativity are invariant with respect to Lorentz transformations, but particular solutions of the equations are in general not.</p>
 
     <p style="text-align: left;">Solution of the Friedman equations violate the Lorentz invariance. In a Friedmannian Universe there is a selected cosmological time $t,$  which is the proper time of the comoving observer, who sees the spatially homogeneous and isotropic Universe. The situation is typical for physics: equations of General relativity are invariant with respect to Lorentz transformations, but particular solutions of the equations are in general not.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ31"></div>
+
<div id="equ31"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 8. ===
 
=== Problem 8. ===
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
Line 171: Line 178:
 
\approx 1.12 \cdot {10^{ - 29}}g/cm^3\]</p>
 
\approx 1.12 \cdot {10^{ - 29}}g/cm^3\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ33"></div>
 
  
 +
<div id="equ33"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 9. ===
 
=== Problem 9. ===
 
Show that the first Friedman equation can be presented in the form
 
Show that the first Friedman equation can be presented in the form
Line 197: Line 205:
 
= \sum\limits_i \Omega_i .\]</p>
 
= \sum\limits_i \Omega_i .\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ34n"></div>
+
<div id="equ34n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 10. ===
 
=== Problem 10. ===
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
Line 211: Line 220:
 
\[a= \frac{H^{-1}}{\big|\Omega- 1\big|^{1/2}}.\]</p>
 
\[a= \frac{H^{-1}}{\big|\Omega- 1\big|^{1/2}}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ34"></div>
+
<div id="equ34"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 11. ===
 
=== Problem 11. ===
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
Line 222: Line 232:
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ35"></div>
+
 
 +
<div id="equ35"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 12. ===
 
=== Problem 12. ===
 
Prove that in the case of spatially flat Universe
 
Prove that in the case of spatially flat Universe
Line 235: Line 246:
 
$\dot H = \frac{\ddot a}{a} - {H^2}$. Plugging the Friedman equation into the right hand side, we get the required equality.</p>
 
$\dot H = \frac{\ddot a}{a} - {H^2}$. Plugging the Friedman equation into the right hand side, we get the required equality.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ36"></div>
+
<div id="equ36"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 13. ===
 
=== Problem 13. ===
 
Obtain the Raychadhuri equation
 
Obtain the Raychadhuri equation
Line 247: Line 259:
 
     <p style="text-align: left;">The required result is obtained by straightforward plugging of the second Friedman equations into $\frac{\ddot a}{a} = H^2 + \dot H$.</p>
 
     <p style="text-align: left;">The required result is obtained by straightforward plugging of the second Friedman equations into $\frac{\ddot a}{a} = H^2 + \dot H$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ37"></div>
+
<div id="equ37"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 14. ===
 
=== Problem 14. ===
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
Line 270: Line 283:
 
Introducing the state parameter $w=p/\rho$, it is easy to rewrite it in terms of logarithms.</p>
 
Introducing the state parameter $w=p/\rho$, it is easy to rewrite it in terms of logarithms.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ68"></div>
+
<div id="equ68"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 15. ===
 
=== Problem 15. ===
 
Obtain the conservation equation in terms of the conformal time.
 
Obtain the conservation equation in terms of the conformal time.
Line 283: Line 297:
 
3\mathcal{H}\left( 1 + w_i \right)\rho_{i} = 0.\]</p>
 
3\mathcal{H}\left( 1 + w_i \right)\rho_{i} = 0.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ38"></div>
+
<div id="equ38"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 16. ===
 
=== Problem 16. ===
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
Line 303: Line 318:
 
\[\dot \rho  + 3\frac{{\dot a}}{a}(\rho  + p) = 0.\]</p>
 
\[\dot \rho  + 3\frac{{\dot a}}{a}(\rho  + p) = 0.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ46"></div>
+
<div id="equ46"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 17. ===
 
=== Problem 17. ===
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
Line 325: Line 341:
 
By rescaling of $a$ one can always set $k=0,\pm1$ (see [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ57|problem]]).</p>
 
By rescaling of $a$ one can always set $k=0,\pm1$ (see [[Friedman-Lemaitre-Robertson-Walker_(FLRW)_metric#equ57|problem]]).</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ_46e"></div>
+
<div id="equ_46e"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 18. ===
 
=== Problem 18. ===
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
Line 343: Line 360:
 
\[\dot{\rho}+3\dot{N}(\rho+p)=0\]</p>
 
\[\dot{\rho}+3\dot{N}(\rho+p)=0\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ47"></div>
+
<div id="equ47"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 19. ===
 
=== Problem 19. ===
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
Line 357: Line 375:
 
\[\rho  = \rho _0e^{ - 3(1 + w)N}.\]</p>
 
\[\rho  = \rho _0e^{ - 3(1 + w)N}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ43"></div>
+
 
 +
<div id="equ43"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 20. ===
 
=== Problem 20. ===
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
Line 372: Line 391:
 
   </div>
 
   </div>
 
</div>
 
</div>
 +
</div>
 +
 +
  
  
<div id="equ44"></div>
+
<div id="equ44"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 21. ===
 
=== Problem 21. ===
 
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
Line 384: Line 406:
 
=  - 1 - \frac{2}{3}\frac{\dot H}{H^2}.\]</p>
 
=  - 1 - \frac{2}{3}\frac{\dot H}{H^2}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ_duality"></div>
+
<div id="equ_duality"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 22. ===
 
=== Problem 22. ===
 
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
 
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
Line 411: Line 434:
 
This ''duality'' maps expanding universes into contracting ones (filled with somewhat peculiar matter) and vice-versa.</p>
 
This ''duality'' maps expanding universes into contracting ones (filled with somewhat peculiar matter) and vice-versa.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ68n"></div>
+
<div id="equ68n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 23. ===
 
=== Problem 23. ===
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
 
Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.
Line 439: Line 463:
 
\[w'=3\mathcal{H}(w+1)(w-c_{s}^{2}).\]</p>
 
\[w'=3\mathcal{H}(w+1)(w-c_{s}^{2}).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ44_1"></div>
+
<div id="equ44_1"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 24. ===
 
=== Problem 24. ===
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
 
Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.
Line 459: Line 484:
 
\kappa\sqrt{\frac{\rho}{3}}\right)\right).\]</p>
 
\kappa\sqrt{\frac{\rho}{3}}\right)\right).\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ45"></div>
+
<div id="equ45"></div><div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 25. ===
 
=== Problem 25. ===
 
Find the upper bound for the state parameter $w$.
 
Find the upper bound for the state parameter $w$.
Line 472: Line 498:
 
Due to the causality condition $c_s^2 = w \le 1$ (note that we use units with $c = 1$).</p>
 
Due to the causality condition $c_s^2 = w \le 1$ (note that we use units with $c = 1$).</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
 
<div id="equ52"></div>
 
<div id="equ52"></div>
 
+
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 26. ===
 
=== Problem 26. ===
 
Show that for non-relativistic particles the state parameter $w$ is much less unity.
 
Show that for non-relativistic particles the state parameter $w$ is much less unity.
Line 490: Line 517:
 
=\frac{\left<v^2\right>}{3 c^2}\ll 1.\]</p>
 
=\frac{\left<v^2\right>}{3 c^2}\ll 1.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>

Revision as of 10:03, 24 July 2012


Problem 1.

Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations: \begin{align}\label{FriedmanEqI} \Big(\frac{\dot a}{a}\Big)^2& =\; \frac{8\pi G}{3}\rho -\frac{k}{a^2};\\ \label{FriedmanEqII} \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p). \end{align} Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$ (see problem).


Problem 2.

Derive the Friedman equations in terms of conformal time.


Problem 3.

Show that the first Friedman equation is the first integral of the second one.


Problem 4.

Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.


Problem 5.

How does the magnitude of pressure affect the expansion rate?


Problem 6.

Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form \[HH' = - 4\pi G\left(\rho + p\right),\] where $H' \equiv \frac{dH}{d\ln a}.$


Problem 7.

Are solutions of Friedman equations Lorentz-invariant?


Problem 8.

The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.


Problem 9.

Show that the first Friedman equation can be presented in the form \[\sum\limits_i\Omega_i=1,\] where $\Omega_i$ are relative densities of the components, \[\Omega_i\equiv\frac{\rho_{i}}{\rho_{cr}}, \quad \rho_{cr}=\frac{3H^{2}}{8\pi G}, \quad \rho_{curv}=-\frac{3}{8\pi G}\frac{k}{a^2},\] and $\rho_{curv}$ describes the contribution to the total density of the spatial curvature.


Problem 10.

Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.


Problem 11.

Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.


Problem 12.

Prove that in the case of spatially flat Universe \[\dot{H} = - 4\pi G (\rho + p).\]


Problem 13.

Obtain the Raychadhuri equation \[H^2 + \dot H = - \frac{4\pi G}{3}(\rho + 3p).\]


Problem 14.

Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe: \[\dot{\rho}+3H(\rho+p)=0.\] Show that it can be presented in the form \[\frac{d\ln\rho}{d\ln a}+3(1+w)=0,\] where $w=p/\rho$ is the state parameter for matter.


Problem 15.

Obtain the conservation equation in terms of the conformal time.


Problem 16.

Starting from the energy momentum conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.


Problem 17.

Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.


Problem 18.

For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor \[N(t)=\ln\frac{a(t)}{a_0}.\]


Problem 19.

Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.


Problem 20.

For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.



Problem 21.

Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.


Problem 22.

Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor \[a \to \alpha=\frac{1}{a}\] and a the new equation of state: \[(w+1)\to (\omega+1)=-(w+1).\]


Problem 23.

Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.


Problem 24.

Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.


Problem 25.

Find the upper bound for the state parameter $w$.


Problem 26.

Show that for non-relativistic particles the state parameter $w$ is much less unity.