Difference between revisions of "Gauge transformations and degrees of freedom"

From Universe in Problems
Jump to: navigation, search
(Problem 1: Gauge transformations)
 
(5 intermediate revisions by one other user not shown)
Line 11: Line 11:
 
$^*$In addition to global Lorentz transformations, which are symmetries of the Minkowski background, or in general the isometries of the background spacetime.
 
$^*$In addition to global Lorentz transformations, which are symmetries of the Minkowski background, or in general the isometries of the background spacetime.
  
 +
 +
 +
__TOC__
  
  
Line 48: Line 51:
 
\[{h'}_{\mu\nu}=h_{\mu\nu}
 
\[{h'}_{\mu\nu}=h_{\mu\nu}
 
-\xi_{\mu,\nu}-\xi_{\nu,\mu}.\]
 
-\xi_{\mu,\nu}-\xi_{\nu,\mu}.\]
Note that this in fact the same derivation as the one for the Killing equation.
+
Note that this is in fact the same derivation as the one for the Killing equation.
 
<br/>
 
<br/>
 
The corrections for the curvature tensor are calculated in the same way, and will be proportional to $R_{\mu\nu\rho\sigma}\xi^\lambda$. As curvature tensor itself is linear by $h$, the corrections are quadratic and can be discarded in the first-order approximation. The same applies to the contractions: $R_{\mu\nu}$ and $R$. Thus the curvature tensor is said to be ''gauge invariant'' in the linearized theory, very much like electromagnetic field tensor $F^{\mu\nu}$ is invariant under gauge transformations of electrodynamics $A_\mu\to A_\mu +\partial_\mu \psi$.</p>
 
The corrections for the curvature tensor are calculated in the same way, and will be proportional to $R_{\mu\nu\rho\sigma}\xi^\lambda$. As curvature tensor itself is linear by $h$, the corrections are quadratic and can be discarded in the first-order approximation. The same applies to the contractions: $R_{\mu\nu}$ and $R$. Thus the curvature tensor is said to be ''gauge invariant'' in the linearized theory, very much like electromagnetic field tensor $F^{\mu\nu}$ is invariant under gauge transformations of electrodynamics $A_\mu\to A_\mu +\partial_\mu \psi$.</p>
Line 87: Line 90:
 
Write down geodesic equations for a particle in the weak field limit in terms of fields  $\Phi$, $w_\alpha$, $h_{\alpha\beta}$.  What are the first terms of expansion by $v/c$ in the non-relativistic limit?
 
Write down geodesic equations for a particle in the weak field limit in terms of fields  $\Phi$, $w_\alpha$, $h_{\alpha\beta}$.  What are the first terms of expansion by $v/c$ in the non-relativistic limit?
  
'''HINT:'''
 
The equations of motion for a particle with $u^{\mu}=E(1,\mathbf{v})$ are$*$
 
\begin{align}
 
\frac{dE}{dt}&=-E\big[\pa_0 \Phi
 
+2\pa_\alpha \Phi\; v^\alpha
 
-\big(\pa_{(\alpha} w_{\beta)}
 
+\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big)
 
v^\alpha v^\beta \big] ;\\
 
\frac{dp^\alpha}{dt}&=-E\big[
 
\pa_\alpha \Phi+\pa_0 w_\alpha
 
+2(\pa_{[\alpha}w_{\beta]}
 
+\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta}
 
-\big(
 
\pa_{(\alpha} h_{\beta)\gamma}
 
-\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big)
 
v^\beta v^\gamma \big].
 
\end{align}
 
We can define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields
 
\begin{align}
 
G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
 
\pa_\beta w_\gamma,
 
\end{align}
 
so that the first terms in the equation of motion reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.
 
  
$^*$(Anti-)symmetrization is defined with the $1/2$ factors.
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 118: Line 96:
 
     <p style="text-align: left;">Calculating the Christoffel symbols, we get
 
     <p style="text-align: left;">Calculating the Christoffel symbols, we get
 
\begin{align}
 
\begin{align}
{\Gamma^0}_{00}&=\pa_{0}\Phi;\\
+
{\Gamma^0}_{00}&=\partial_{0}\Phi;\\
 
{\Gamma^\alpha}_{00}&
 
{\Gamma^\alpha}_{00}&
=\pa_{\alpha}\Phi+\pa_0 w_\alpha;\\
+
=\partial_{\alpha}\Phi+\partial_0 w_\alpha;\\
 
{\Gamma^0}_{\alpha 0}&
 
{\Gamma^0}_{\alpha 0}&
=\pa_{\alpha}\Phi;\\
+
=\partial_{\alpha}\Phi;\\
 
{\Gamma^0}_{\alpha\beta}&
 
{\Gamma^0}_{\alpha\beta}&
=-\pa_{(\alpha}w_{\beta)}
+
=-\partial_{(\alpha}w_{\beta)}
-\tfrac{1}{2}\pa_0 h_{\alpha\beta};\\
+
-\tfrac{1}{2}\partial_0 h_{\alpha\beta};\\
 
{\Gamma^\alpha}_{0\beta}&
 
{\Gamma^\alpha}_{0\beta}&
=\tfrac{1}{2}\pa_0 h_{\alpha\beta}
+
=\tfrac{1}{2}\partial_0 h_{\alpha\beta}
+\pa_{[\alpha}w_{\beta]};\\
+
+\partial_{[\alpha}w_{\beta]};\\
 
{\Gamma^\alpha}_{\beta\gamma}&
 
{\Gamma^\alpha}_{\beta\gamma}&
=\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}
+
=\tfrac{1}{2}\partial_\alpha h_{\beta\gamma}
-\pa_{[\alpha}h_{\beta]\gamma},
+
-\partial_{[\alpha}h_{\beta]\gamma},
 
\end{align}
 
\end{align}
 
where brackets and braces denote (anti-)symmetrization:
 
where brackets and braces denote (anti-)symmetrization:
Line 153: Line 131:
 
On substitution of ${\Gamma^{\lambda}}_{\mu\nu}$, in explicit form we obtain
 
On substitution of ${\Gamma^{\lambda}}_{\mu\nu}$, in explicit form we obtain
 
\begin{align}
 
\begin{align}
\frac{dE}{dt}&=-E\big[\pa_0 \Phi
+
\frac{dE}{dt}&=-E\big[\partial_0 \Phi
+2\pa_\alpha \Phi\; v^\alpha
+
+2\partial_\alpha \Phi\; v^\alpha
-\big(\pa_{(\alpha} w_{\beta)}
+
-\big(\partial_{(\alpha} w_{\beta)}
+\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big)
+
+\tfrac{1}{2}\partial_0 h_{\alpha\beta}\big)
 
v^\alpha v^\beta \big] ;\\
 
v^\alpha v^\beta \big] ;\\
 
\frac{dp^\alpha}{dt}&=-E\big[
 
\frac{dp^\alpha}{dt}&=-E\big[
\pa_\alpha \Phi+\pa_0 w_\alpha
+
\partial_\alpha \Phi+\partial_0 w_\alpha
+2(\pa_{[\alpha}w_{\beta]}
+
+2(\partial_{[\alpha}w_{\beta]}
+\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta}
+
+\tfrac12 \partial_0 h_{\alpha\beta})v^{\beta}
 
-\big(
 
-\big(
\pa_{(\alpha} h_{\beta)\gamma}
+
\partial_{(\alpha} h_{\beta)\gamma}
-\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big)
+
-\tfrac{1}{2}\partial_\alpha h_{\beta\gamma}\big)
 
v^\beta v^\gamma \big].
 
v^\beta v^\gamma \big].
 
\end{align}
 
\end{align}
 
If we define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields as
 
If we define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields as
 
\begin{align}
 
\begin{align}
G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\
+
G^\alpha&=-\partial_\alpha \Phi -\partial_0 w_\alpha;\\
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
\pa_\beta w_\gamma,
+
\partial_\beta w_\gamma,
 
\end{align}
 
\end{align}
 
the first terms appear to be represented in a very suggestive form, reminiscent of electrodynamics (remember that $E\approx m(1+v^2/2)$):
 
the first terms appear to be represented in a very suggestive form, reminiscent of electrodynamics (remember that $E\approx m(1+v^2/2)$):
Line 177: Line 155:
 
\frac{1}{E}\frac{d \mathbf{p}}{dt}
 
\frac{1}{E}\frac{d \mathbf{p}}{dt}
 
&=\mathbf{G}+\mathbf{v}\times \mathbf{H}
 
&=\mathbf{G}+\mathbf{v}\times \mathbf{H}
+\mathbf{e}^{\alpha}\pa_0 h_{\alpha\beta}v^\beta
+
+\mathbf{e}^{\alpha}\partial_0 h_{\alpha\beta}v^\beta
 
+O(v^2).
 
+O(v^2).
 
\end{align}
 
\end{align}
 +
The first terms in the equation of motion thus reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 191: Line 170:
 
Derive the Einstein equations for the scalar $\Phi,\Psi$, vector $w^\alpha$ and tensor $s_{\alpha\beta}$ perturbations. Which of them are dynamical?
 
Derive the Einstein equations for the scalar $\Phi,\Psi$, vector $w^\alpha$ and tensor $s_{\alpha\beta}$ perturbations. Which of them are dynamical?
  
'''HINT:'''
 
The Einstein tensor is
 
\begin{align}
 
G_{00}&=-2\triangle \Psi
 
-\pa_\alpha \pa_\beta s_{\alpha\beta};\\
 
G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi
 
+\tfrac12 \triangle  w^\alpha
 
-\tfrac12 \pa_\alpha \pa_\beta w^\beta
 
+\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\
 
G_{\alpha\beta}&
 
=(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta)
 
(\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-\\
 
&-\pa_0 \pa_{(\alpha}w_{\beta)}
 
-\delta_{\alpha\beta}\pa_0 \pa_\gamma w^\gamma
 
-\square s_{\alpha\beta}
 
-\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma}
 
+\delta_{\alpha\beta}\pa_\gamma \pa_\delta
 
s_{\gamma\delta},
 
\end{align}
 
where $\triangle\equiv\pa_\alpha \pa_\alpha$, $\square \equiv\pa_0^2 -\triangle$ and summation is assumed over any repeated indices.
 
 
None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 218: Line 175:
 
     <p style="text-align: left;">First note, that $\eta_{\alpha\beta}=-\delta_{\alpha\beta}$, so in the chosen frame $w_{\alpha}=-w^{\alpha}$. Straightforward calculation gives the Riemann tensor in the first order
 
     <p style="text-align: left;">First note, that $\eta_{\alpha\beta}=-\delta_{\alpha\beta}$, so in the chosen frame $w_{\alpha}=-w^{\alpha}$. Straightforward calculation gives the Riemann tensor in the first order
 
\begin{align}
 
\begin{align}
R_{0\alpha0\beta}&=-\pa_\alpha \pa_\beta \Phi
+
R_{0\alpha0\beta}&=-\partial_\alpha \partial_\beta \Phi
-\pa_0 \pa_{(\alpha}w_{\beta)}
+
-\partial_0 \partial_{(\alpha}w_{\beta)}
-\tfrac{1}{2}\pa_0^2 h_{\alpha\beta};\\
+
-\tfrac{1}{2}\partial_0^2 h_{\alpha\beta};\\
 
R_{0\alpha\gamma\beta}&
 
R_{0\alpha\gamma\beta}&
=\pa_\alpha \pa_{[\beta}w_{\gamma]}
+
=\partial_\alpha \partial_{[\beta}w_{\gamma]}
-\pa_{0}\pa_{[\gamma}h_{\beta]\alpha};\\
+
-\partial_{0}\partial_{[\gamma}h_{\beta]\alpha};\\
 
R_{\delta\alpha\gamma\beta}&
 
R_{\delta\alpha\gamma\beta}&
=\pa_\alpha \pa_{[\gamma}h_{\beta]\delta}
+
=\partial_\alpha \partial_{[\gamma}h_{\beta]\delta}
-\pa_{\delta}\pa_{[\gamma}h_{\beta]\alpha};
+
-\partial_{\delta}\partial_{[\gamma}h_{\beta]\alpha};
 
\end{align}
 
\end{align}
 
Ricci tensor
 
Ricci tensor
 
\begin{align}
 
\begin{align}
R_{00}&=\triangle \Phi -\pa_0 \nabla \mathbf{w}
+
R_{00}&=\triangle \Phi -\partial_0 \nabla \mathbf{w}
-3\pa_0^2 \Psi;\\
+
-3\partial_0^2 \Psi;\\
R_{0\gamma}&=3\pa_0 \pa_\gamma \Psi
+
R_{0\gamma}&=3\partial_0 \partial_\gamma \Psi
 
+\tfrac12 \triangle w^\gamma
 
+\tfrac12 \triangle w^\gamma
-\tfrac12 \pa_\gamma \nabla \mathbf{w}
+
-\tfrac12 \partial_\gamma \nabla \mathbf{w}
+\tfrac12 \pa_0 \pa_\alpha h_{\alpha\gamma};\\
+
+\tfrac12 \partial_0 \partial_\alpha h_{\alpha\gamma};\\
 
R_{\alpha\beta}&=
 
R_{\alpha\beta}&=
-\pa_\alpha \pa_\beta (\Phi+\Psi)
+
-\partial_\alpha \partial_\beta (\Phi+\Psi)
-\pa_0 \pa_{(\alpha}w_{\beta)}
+
-\partial_0 \partial_{(\alpha}w_{\beta)}
 
-\tfrac12 \square h_{\alpha\beta}
 
-\tfrac12 \square h_{\alpha\beta}
-2\pa_\gamma \pa_{(\alpha}s_{\beta)\gamma},
+
-2\partial_\gamma \partial_{(\alpha}s_{\beta)\gamma},
 
\end{align}
 
\end{align}
 
where
 
where
\[\nabla \mathbf{w}\equiv\pa_\alpha w^\alpha;\quad
+
\[\nabla \mathbf{w}\equiv\partial_\alpha w^\alpha;\quad
\triangle\equiv\pa_\alpha \pa_\alpha;\quad
+
\triangle\equiv\partial_\alpha \partial_\alpha;\quad
\square \equiv\pa_0^2 -\triangle,\]
+
\square \equiv\partial_0^2 -\triangle,\]
 
and summation is assumed over any repeated indices. Then
 
and summation is assumed over any repeated indices. Then
 
\begin{align}
 
\begin{align}
 
R_{\alpha\alpha}=-\triangle(\Phi+\Psi)
 
R_{\alpha\alpha}=-\triangle(\Phi+\Psi)
 
+3\square \Psi
 
+3\square \Psi
+\pa_0 \nabla\mathbf{w}
+
+\partial_0 \nabla\mathbf{w}
-2\pa_\alpha \pa_\beta s_{\alpha\beta}
+
-2\partial_\alpha \partial_\beta s_{\alpha\beta}
 
\end{align}
 
\end{align}
 
and the Einstein tensor is
 
and the Einstein tensor is
 
\begin{align}
 
\begin{align}
 
G_{00}&=-2\triangle \Psi
 
G_{00}&=-2\triangle \Psi
-\pa_\alpha \pa_\beta s_{\alpha\beta};\\
+
-\partial_\alpha \partial_\beta s_{\alpha\beta};\\
G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi
+
G_{0\alpha}&=3\partial_0 \partial_\alpha \Psi
 
+\tfrac12 \triangle  w^\alpha
 
+\tfrac12 \triangle  w^\alpha
-\tfrac12 \pa_\alpha \nabla\mathbf{w}
+
-\tfrac12 \partial_\alpha \nabla\mathbf{w}
+\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\
+
+\tfrac12 \partial_0 \partial_\beta h_{\alpha\beta};\\
 
G_{\alpha\beta}&
 
G_{\alpha\beta}&
=(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta)
+
=(\delta_{\alpha\beta}\triangle -\partial_\alpha \partial_\beta)
(\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-
+
(\Phi+\Psi)-2\delta_{\alpha\beta}\partial_0^2 \Psi-
 
\notag\\
 
\notag\\
&-\pa_0 \pa_{(\alpha}w_{\beta)}
+
&-\partial_0 \partial_{(\alpha}w_{\beta)}
-\delta_{\alpha\beta}\pa_0 \nabla \mathbf{w}
+
-\delta_{\alpha\beta}\partial_0 \nabla \mathbf{w}
 
-\square s_{\alpha\beta}
 
-\square s_{\alpha\beta}
-\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma}
+
-\tfrac12 \partial_{\gamma}\partial_{(\alpha}s_{\beta)\gamma}
+\delta_{\alpha\beta}\pa_\gamma \pa_\delta
+
+\delta_{\alpha\beta}\partial_\gamma \partial_\delta
 
s_{\gamma\delta}.
 
s_{\gamma\delta}.
\end{align}</p>
+
\end{align}
 +
None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 279: Line 237:
 
<div id="gw18"></div>
 
<div id="gw18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 4: Gauge decomposition===
 
=== Problem 4: Gauge decomposition===
 
Find the gauge transformations for the scalar, vector and tensor perturbations.
 
Find the gauge transformations for the scalar, vector and tensor perturbations.
  
'''HINT:'''
+
<div class="NavFrame collapsed">
The gauge transformation $x\to x+\xi$ changes the full metric perturbation as
+
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The gauge transformation $x\to x+\xi$ changes the full metric perturbation as
 
\[h_{\mu\nu}\to h_{\mu\nu}
 
\[h_{\mu\nu}\to h_{\mu\nu}
-\pa_\mu \xi_{\nu}-\pa_\nu \xi_\mu.\]
+
-\partial_\mu \xi_{\nu}-\partial_\nu \xi_\mu.\]
 
Then
 
Then
 
\begin{align}
 
\begin{align}
\Phi\equiv h_{00}&\to \Phi- \pa_0 \xi_0;\\
+
\Phi\equiv h_{00}&\to \Phi- \partial_0 \xi_0;\\
 
w_\alpha\equiv h_{0\alpha}&\to
 
w_\alpha\equiv h_{0\alpha}&\to
w_{\alpha}+\pa_0 \xi_{\alpha}+\pa_\alpha \xi_0;\\
+
w_{\alpha}+\partial_0 \xi_{\alpha}+\partial_\alpha \xi_0;\\
 
\Psi=\tfrac16 h^\alpha_\alpha &\to
 
\Psi=\tfrac16 h^\alpha_\alpha &\to
\Psi+\tfrac13 \pa_\alpha \xi_\alpha;\\
+
\Psi+\tfrac13 \partial_\alpha \xi_\alpha;\\
 
s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta}
 
s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta}
 
-\Psi \eta_{\alpha\beta})&\to
 
-\Psi \eta_{\alpha\beta})&\to
s_{\alpha\beta}-\pa_{(\alpha}\xi_{\beta)}
+
s_{\alpha\beta}-\partial_{(\alpha}\xi_{\beta)}
-\tfrac13 \eta_{\alpha\beta}\pa_\gamma \xi_\gamma
+
-\tfrac13 \eta_{\alpha\beta}\partial_\gamma \xi_\gamma
 
\end{align}
 
\end{align}
<!--<div class="NavFrame collapsed">
+
</p>
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
 
   </div>
 
   </div>
</div>--></div>
+
</div></div>
  
  
Line 316: Line 274:
 
Write the explicit coordinate transformations and the metric in this gauge.
 
Write the explicit coordinate transformations and the metric in this gauge.
  
'''HINT:'''
 
$ds^{2}=dt^{2}
 
-(\delta_{\alpha\beta}-h_{\alpha\beta})
 
dx^\alpha dx^\beta$
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 325: Line 279:
 
     <p style="text-align: left;">From the gauge transformations the equations for $x^\mu (x)$ are
 
     <p style="text-align: left;">From the gauge transformations the equations for $x^\mu (x)$ are
 
\begin{align}
 
\begin{align}
&\pa_0 \xi^0 =\tfrac12 \Phi;\\
+
&\partial_0 \xi^0 =\tfrac12 \Phi;\\
&\pa_0 \xi_\alpha= w_\alpha-\pa_\alpha \xi_0,
+
&\partial_0 \xi_\alpha= w_\alpha-\partial_\alpha \xi_0,
 
\end{align}
 
\end{align}
 
and why the gauge is named synchronous is obvious from the attractive form of the metric in it:
 
and why the gauge is named synchronous is obvious from the attractive form of the metric in it:
Line 345: Line 299:
 
This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that
 
This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that
 
\begin{equation}
 
\begin{equation}
\pa_\alpha s^{\alpha\beta}=0,\qquad
+
\partial_\alpha s^{\alpha\beta}=0,\qquad
\pa_\alpha w^\alpha =0.
+
\partial_\alpha w^\alpha =0.
 
\end{equation}
 
\end{equation}
 
Find the equations for $\xi^\mu$ that fix the transverse gauge.
 
Find the equations for $\xi^\mu$ that fix the transverse gauge.
  
'''HINT:'''
 
$\triangle \xi_\beta
 
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha
 
=\pa_\alpha s_{\alpha\beta},\quad
 
\triangle \xi_0 =-\pa_\alpha w_\alpha
 
-\pa_0 \pa_\alpha \xi_\alpha$
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">The first condition implies
 
     <p style="text-align: left;">The first condition implies
\[0=\pa_\alpha s_{\alpha\beta}'
+
\[0=\partial_\alpha s_{\alpha\beta}'
=\pa_\alpha s_{\alpha\beta}-\tfrac{1}{2}
+
=\partial_\alpha s_{\alpha\beta}-\tfrac{1}{2}
(\pa_\alpha \pa_\alpha \xi_\beta
+
(\partial_\alpha \partial_\alpha \xi_\beta
+\pa_\alpha \pa_\beta \xi_\alpha)
+
+\partial_\alpha \partial_\beta \xi_\alpha)
+\tfrac13 \pa_{\beta}\pa_{\alpha}\xi_\alpha
+
+\tfrac13 \partial_{\beta}\partial_{\alpha}\xi_\alpha
=\tfrac12 \big[\pa_\alpha s_{\alpha\beta}
+
=\tfrac12 \big[\partial_\alpha s_{\alpha\beta}
 
-(\triangle \xi_\beta
 
-(\triangle \xi_\beta
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha)\big],\]
+
+\tfrac13 \partial_\alpha \partial_\beta \xi_\alpha)\big],\]
 
and the second
 
and the second
\[0=\pa_{\alpha}w_{\alpha}'=\pa_{\alpha}w_\alpha
+
\[0=\partial_{\alpha}w_{\alpha}'=\partial_{\alpha}w_\alpha
+\pa_\alpha \pa_0 \xi_\alpha
+
+\partial_\alpha \partial_0 \xi_\alpha
+\pa_\alpha \pa_\alpha \xi_0
+
+\partial_\alpha \partial_\alpha \xi_0
=\pa_\alpha w_\alpha +
+
=\partial_\alpha w_\alpha +
(\triangle \xi_0 +\pa_0 \pa_\alpha \xi_\alpha).\]
+
(\triangle \xi_0 +\partial_0 \partial_\alpha \xi_\alpha).\]
 
The solution of the first (three) equation(s)
 
The solution of the first (three) equation(s)
 
\[\triangle \xi_\beta
 
\[\triangle \xi_\beta
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha
+
+\tfrac13 \partial_\alpha \partial_\beta \xi_\alpha
=\pa_\alpha s_{\alpha\beta}\]
+
=\partial_\alpha s_{\alpha\beta}\]
 
gives $\xi^\alpha$, then from the second equation
 
gives $\xi^\alpha$, then from the second equation
\[\triangle \xi_0 =-\pa_\alpha w_\alpha
+
\[\triangle \xi_0 =-\partial_\alpha w_\alpha
-\pa_0 \pa_\alpha \xi_\alpha\]
+
-\partial_0 \partial_\alpha \xi_\alpha\]
 
one can find $\xi^0$.</p>
 
one can find $\xi^0$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 13:01, 15 January 2013



The general equations \[G_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}\] are valid in any coordinate frame, in which the metric obeys eq. 1, so$^*$ we have the freedom to make coordinate transformation \[x^{\mu}\to {x'}^{\mu}=x^{\mu}+\xi^{\mu}(x),\] with four arbitrary functions $\xi^\mu$, which are of the first order by $h_{\mu\nu}$.

$^*$In addition to global Lorentz transformations, which are symmetries of the Minkowski background, or in general the isometries of the background spacetime.



Problem 1: Gauge transformations

Find $h_{\mu\nu}$ in the new (primed) coordinates; show that curvature tensor and its contractions are gauge invariant and do not change their functional form.



In a given frame the metric perturbation $h_{\mu\nu}$ can be decomposed into pieces which transform under spatial rotations as scalars, vectors and tensors (the irreducible representations of the rotation group $SO(3)$) in the following way (spatial components are denoted by Greek indices from the beginning of the alphabet $\alpha,\beta,\gamma\ldots=1,2,3$): \begin{align} h_{00}&=2\Phi;\\ h_{0\alpha}&=-w_{\alpha};\\ h_{\alpha\beta}&=2\big( s_{\alpha\beta} +\Psi\eta_{\alpha\beta}\big), \end{align} where $h_{\alpha\beta}$ is further decomposed in such a way that $s_{ij}$ is traceless and $\Psi$ encodes the trace: \begin{align} h\equiv h_{\alpha}^{\alpha} &=\eta^{\alpha\beta}h_{\alpha\beta} =0+2\Psi \delta^{\alpha}_{\alpha}=6\Psi;\\ \Psi&=\tfrac{1}{6}h;\\ s_{\alpha\beta}&=\tfrac{1}{2}\big(h_{\alpha\beta} -\tfrac{1}{6}h\; \eta_{\alpha\beta}\big). \end{align} Thus the metric takes the form \[ds^{2}=(1+2\Phi)dt^2 -2w_{\alpha}dt\,dx^{\alpha} -\big[(1-2\Psi)\eta_{\alpha\beta} -2s_{\alpha\beta}\big]dx^\alpha dx^\beta\]



Problem 2: Particle's motion, gravo-magnetic and gravo-electric fields

Write down geodesic equations for a particle in the weak field limit in terms of fields $\Phi$, $w_\alpha$, $h_{\alpha\beta}$. What are the first terms of expansion by $v/c$ in the non-relativistic limit?



Problem 3: Dynamical degrees of freedom

Derive the Einstein equations for the scalar $\Phi,\Psi$, vector $w^\alpha$ and tensor $s_{\alpha\beta}$ perturbations. Which of them are dynamical?


Problem 4: Gauge decomposition

Find the gauge transformations for the scalar, vector and tensor perturbations.


Problem 5: Synchronous gauge

This one is equivalent to Gaussian normal coordinates and is fixed by setting \begin{equation} \Phi=0,\qquad w^\alpha=0. \end{equation} Write the explicit coordinate transformations and the metric in this gauge.


Problem 6: Transverse gauge

This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that \begin{equation} \partial_\alpha s^{\alpha\beta}=0,\qquad \partial_\alpha w^\alpha =0. \end{equation} Find the equations for $\xi^\mu$ that fix the transverse gauge.