Difference between revisions of "Gauge transformations and degrees of freedom"

From Universe in Problems
Jump to: navigation, search
(Created page with "3")
 
Line 1: Line 1:
 
[[Category:Weak field limit and gravitational waves|3]]
 
[[Category:Weak field limit and gravitational waves|3]]
 +
 +
 +
 +
The general equations
 +
\[G_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}\]
 +
are valid in any coordinate frame, in which the metric obeys (\ref{WFL}), so\footnote{In addition to global Lorentz transformations, which are symmetries of the Minkowski background, or in general the isometries of the background spacetime.} we have the freedom to make coordinate transformation
 +
\[x^{\mu}\to {x'}^{\mu}=x^{\mu}+\xi^{\mu}(x),\]
 +
with four arbitrary functions $\xi^\mu$, which are of the first order by $h_{\mu\nu}$.
 +
 +
 +
 +
 +
 +
<div id="gw15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1: Gauge transformations===
 +
Find $h_{\mu\nu}$ in the new (primed) coordinates; show that curvature tensor and its contractions are gauge invariant and do not change their functional form.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$g_{\mu\nu}$ transforms as tensor, so taking into account that
 +
\[\frac{\partial}{\partial {x'}^{\mu'}}\xi^\mu
 +
=\frac{\partial}{\partial {x}^{\mu'}}\xi^\mu+O(h^2)
 +
=\xi^{\mu}_{,\mu'}+O(h^2),\]
 +
we get
 +
\begin{align}
 +
{g'}_{\mu'\nu'}
 +
&=\frac{\partial x^{\mu}}{\partial {x'}^{\mu'}}
 +
\frac{\partial x^{\nu}}{\partial {x'}^{\nu'}}\;
 +
g_{\mu\nu}=\\
 +
&=\Big(\delta^{\mu}_{\mu'}-
 +
\frac{\partial \xi^{\mu}}{\partial {x'}^{\mu'}}\Big)
 +
\Big(\delta^{\nu}_{\nu'}-
 +
\frac{\partial \xi^{\nu}}{\partial {x'}^{\nu'}}\Big)
 +
\big(\eta_{\mu\nu}+h_{\mu\nu}+O(h^2)\big)=\\
 +
&=\Big(\delta^{\mu}_{\mu'}-
 +
\frac{\partial \xi^{\mu}}{\partial {x}^{\mu'}}\Big)
 +
\Big(\delta^{\nu}_{\nu'}-
 +
\frac{\partial \xi^{\nu}}{\partial {x}^{\nu'}}\Big)
 +
\big(\eta_{\mu\nu}+h_{\mu\nu}+O(h^2)\big)=\\
 +
&=\eta_{\mu'\nu'}+
 +
\big[h_{\mu'\nu'}
 +
-\partial_{\mu'}\xi_{\nu'}
 +
-\partial_{\nu'}\xi_{\mu'}\big]+O(h^2),
 +
\end{align}
 +
thus by definition
 +
\[{h'}_{\mu\nu}=h_{\mu\nu}
 +
-\xi_{\mu,\nu}-\xi_{\nu,\mu}.\]
 +
Note that this in fact the same derivation as the one for the Killing equation.
 +
 +
The corrections for the curvature tensor are calculated in the same way, and will be proportional to $R_{\mu\nu\rho\sigma}\xi^\lambda$. As curvature tensor itself is linear by $h$, the corrections are quadratic and can be discarded in the first-order approximation. The same applies to the contractions: $R_{\mu\nu}$ and $R$. Thus the curvature tensor is said to be \emph{gauge invariant} in the linearized theory, very much like electromagnetic field tensor $F^{\mu\nu}$ is invariant under gauge transformations of electrodynamics $A_\mu\to A_\mu +\pa_\mu \psi$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
 +
In a given frame the metric perturbation $h_{\mu\nu}$ can be decomposed into pieces which transform under spatial rotations as scalars, vectors and tensors (the irreducible representations of the rotation group $SO(3)$) in the following way (spatial components are denoted by Greek indices from the beginning of the alphabet $\alpha,\beta,\gamma\ldots=1,2,3$):
 +
\begin{align}
 +
h_{00}&=2\Phi;\\
 +
h_{0\alpha}&=-w_{\alpha};\\
 +
h_{\alpha\beta}&=2\big( s_{\alpha\beta}
 +
+\Psi\eta_{\alpha\beta}\big),
 +
\end{align}
 +
where $h_{\alpha\beta}$ is further decomposed in such a way that $s_{ij}$ is traceless and $\Psi$ encodes the trace:
 +
\begin{align}
 +
h\equiv h_{\alpha}^{\alpha}
 +
&=\eta^{\alpha\beta}h_{\alpha\beta}
 +
=0+2\Psi \delta^{\alpha}_{\alpha}=6\Psi;\\
 +
\Psi&=\tfrac{1}{6}h;\\
 +
s_{\alpha\beta}&=\tfrac{1}{2}\big(h_{\alpha\beta}
 +
-\tfrac{1}{6}h\; \eta_{\alpha\beta}\big).
 +
\end{align}
 +
Thus the metric takes the form
 +
\[ds^{2}=(1+2\Phi)dt^2 -2w_{\alpha}dt\,dx^{\alpha}
 +
-\big[(1-2\Psi)\eta_{\alpha\beta}
 +
-2s_{\alpha\beta}\big]dx^\alpha dx^\beta\]
 +
 +
 +
 +
 +
<div id="gw16"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2: Particle's motion, gravo-magnetic and gravo-electric fields===
 +
Write down geodesic equations for a particle in the weak field limit in terms of fields  $\Phi$, $w_\alpha$, $h_{\alpha\beta}$.  What are the first terms of expansion by $v/c$ in the non-relativistic limit?
 +
 +
'''HINT:'''
 +
The equations of motion for a particle with $u^{\mu}=E(1,\mathbf{v})$ are$*$
 +
\begin{align}
 +
\frac{dE}{dt}&=-E\big[\pa_0 \Phi
 +
+2\pa_\alpha \Phi\; v^\alpha
 +
-\big(\pa_{(\alpha} w_{\beta)}
 +
+\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big)
 +
v^\alpha v^\beta \big] ;\\
 +
\frac{dp^\alpha}{dt}&=-E\big[
 +
\pa_\alpha \Phi+\pa_0 w_\alpha
 +
+2(\pa_{[\alpha}w_{\beta]}
 +
+\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta}
 +
-\big(
 +
\pa_{(\alpha} h_{\beta)\gamma}
 +
-\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big)
 +
v^\beta v^\gamma \big].
 +
\end{align}
 +
We can define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields
 +
\begin{align}
 +
G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\
 +
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
 +
\pa_\beta w_\gamma,
 +
\end{align}
 +
so that the first terms in the equation of motion reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.
 +
 +
$^*$(Anti-)symmetrization is defined with the $1/2$ factors.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Calculating the Christoffel symbols, we get
 +
\begin{align}
 +
{\Gamma^0}_{00}&=\pa_{0}\Phi;\\
 +
{\Gamma^\alpha}_{00}&
 +
=\pa_{\alpha}\Phi+\pa_0 w_\alpha;\\
 +
{\Gamma^0}_{\alpha 0}&
 +
=\pa_{\alpha}\Phi;\\
 +
{\Gamma^0}_{\alpha\beta}&
 +
=-\pa_{(\alpha}w_{\beta)}
 +
-\tfrac{1}{2}\pa_0 h_{\alpha\beta};\\
 +
{\Gamma^\alpha}_{0\beta}&
 +
=\tfrac{1}{2}\pa_0 h_{\alpha\beta}
 +
+\pa_{[\alpha}w_{\beta]};\\
 +
{\Gamma^\alpha}_{\beta\gamma}&
 +
=\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}
 +
-\pa_{[\alpha}h_{\beta]\gamma},
 +
\end{align}
 +
where brackets and braces denote (anti-)symmetrization:
 +
\[A_{(ab)}=\tfrac{1}{2}(A_{ab}+A_{ba});\quad
 +
A_{[ab]}=\tfrac{1}{2}(A_{ab}-A_{ba}).\]
 +
Taking into account that for a particle with the natural chose of parameter
 +
\begin{align}
 +
u^{\mu}&=\frac{dx^{\mu}}{d\lambda}= E(1,\mathbf{v}),
 +
\qquad\text{and}\\
 +
\frac{dp^\mu}{dt}
 +
&=\frac{dp^\mu / d\lambda}{dt/d\lambda}
 +
=\frac{1}{E}\frac{dp^\mu}{d\lambda},
 +
\end{align}
 +
the geodesic equations can be rewritten as
 +
\begin{align}
 +
\frac{dE}{dt}&=-\frac{1}{E}
 +
{\Gamma^{0}}_{\mu\nu}u^\mu u^\nu;\\
 +
\frac{dp^\alpha}{dt}&=-\frac{1}{E}
 +
{\Gamma^{\alpha}}_{\mu\nu}u^\mu u^\nu.
 +
\end{align}
 +
On substitution of ${\Gamma^{\lambda}}_{\mu\nu}$, in explicit form we obtain
 +
\begin{align}
 +
\frac{dE}{dt}&=-E\big[\pa_0 \Phi
 +
+2\pa_\alpha \Phi\; v^\alpha
 +
-\big(\pa_{(\alpha} w_{\beta)}
 +
+\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big)
 +
v^\alpha v^\beta \big] ;\\
 +
\frac{dp^\alpha}{dt}&=-E\big[
 +
\pa_\alpha \Phi+\pa_0 w_\alpha
 +
+2(\pa_{[\alpha}w_{\beta]}
 +
+\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta}
 +
-\big(
 +
\pa_{(\alpha} h_{\beta)\gamma}
 +
-\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big)
 +
v^\beta v^\gamma \big].
 +
\end{align}
 +
If we define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields as
 +
\begin{align}
 +
G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\
 +
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
 +
\pa_\beta w_\gamma,
 +
\end{align}
 +
the first terms appear to be represented in a very suggestive form, reminiscent of electrodynamics (remember that $E\approx m(1+v^2/2)$):
 +
\begin{align}
 +
\frac{1}{E}\frac{d \mathbf{p}}{dt}
 +
&=\mathbf{G}+\mathbf{v}\times \mathbf{H}
 +
+\mathbf{e}^{\alpha}\pa_0 h_{\alpha\beta}v^\beta
 +
+O(v^2).
 +
\end{align}
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gw17"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3: Dynamical degrees of freedom===
 +
Derive the Einstein equations for the scalar $\Phi,\Psi$, vector $w^\alpha$ and tensor $s_{\alpha\beta}$ perturbations. Which of them are dynamical?
 +
 +
'''HINT:'''
 +
The Einstein tensor is
 +
\begin{align}
 +
G_{00}&=-2\triangle \Psi
 +
-\pa_\alpha \pa_\beta s_{\alpha\beta};\\
 +
G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi
 +
+\tfrac12 \triangle  w^\alpha
 +
-\tfrac12 \pa_\alpha \pa_\beta w^\beta
 +
+\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\
 +
G_{\alpha\beta}&
 +
=(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta)
 +
(\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-\\
 +
&-\pa_0 \pa_{(\alpha}w_{\beta)}
 +
-\delta_{\alpha\beta}\pa_0 \pa_\gamma w^\gamma
 +
-\square s_{\alpha\beta}
 +
-\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma}
 +
+\delta_{\alpha\beta}\pa_\gamma \pa_\delta
 +
s_{\gamma\delta},
 +
\end{align}
 +
where $\triangle\equiv\pa_\alpha \pa_\alpha$, $\square \equiv\pa_0^2 -\triangle$ and summation is assumed over any repeated indices.
 +
 +
None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">First note, that $\eta_{\alpha\beta}=-\delta_{\alpha\beta}$, so in the chosen frame $w_{\alpha}=-w^{\alpha}$. Straightforward calculation gives the Riemann tensor in the first order
 +
\begin{align}
 +
R_{0\alpha0\beta}&=-\pa_\alpha \pa_\beta \Phi
 +
-\pa_0 \pa_{(\alpha}w_{\beta)}
 +
-\tfrac{1}{2}\pa_0^2 h_{\alpha\beta};\\
 +
R_{0\alpha\gamma\beta}&
 +
=\pa_\alpha \pa_{[\beta}w_{\gamma]}
 +
-\pa_{0}\pa_{[\gamma}h_{\beta]\alpha};\\
 +
R_{\delta\alpha\gamma\beta}&
 +
=\pa_\alpha \pa_{[\gamma}h_{\beta]\delta}
 +
-\pa_{\delta}\pa_{[\gamma}h_{\beta]\alpha};
 +
\end{align}
 +
Ricci tensor
 +
\begin{align}
 +
R_{00}&=\triangle \Phi -\pa_0 \nabla \mathbf{w}
 +
-3\pa_0^2 \Psi;\\
 +
R_{0\gamma}&=3\pa_0 \pa_\gamma \Psi
 +
+\tfrac12 \triangle w^\gamma
 +
-\tfrac12 \pa_\gamma \nabla \mathbf{w}
 +
+\tfrac12 \pa_0 \pa_\alpha h_{\alpha\gamma};\\
 +
R_{\alpha\beta}&=
 +
-\pa_\alpha \pa_\beta (\Phi+\Psi)
 +
-\pa_0 \pa_{(\alpha}w_{\beta)}
 +
-\tfrac12 \square h_{\alpha\beta}
 +
-2\pa_\gamma \pa_{(\alpha}s_{\beta)\gamma},
 +
\end{align}
 +
where
 +
\[\nabla \mathbf{w}\equiv\pa_\alpha w^\alpha;\quad
 +
\triangle\equiv\pa_\alpha \pa_\alpha;\quad
 +
\square \equiv\pa_0^2 -\triangle,\]
 +
and summation is assumed over any repeated indices. Then
 +
\begin{align}
 +
R_{\alpha\alpha}=-\triangle(\Phi+\Psi)
 +
+3\square \Psi
 +
+\pa_0 \nabla\mathbf{w}
 +
-2\pa_\alpha \pa_\beta s_{\alpha\beta}
 +
\end{align}
 +
and the Einstein tensor is
 +
\begin{align}
 +
G_{00}&=-2\triangle \Psi
 +
-\pa_\alpha \pa_\beta s_{\alpha\beta};\\
 +
G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi
 +
+\tfrac12 \triangle  w^\alpha
 +
-\tfrac12 \pa_\alpha \nabla\mathbf{w}
 +
+\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\
 +
G_{\alpha\beta}&
 +
=(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta)
 +
(\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-
 +
\notag\\
 +
&-\pa_0 \pa_{(\alpha}w_{\beta)}
 +
-\delta_{\alpha\beta}\pa_0 \nabla \mathbf{w}
 +
-\square s_{\alpha\beta}
 +
-\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma}
 +
+\delta_{\alpha\beta}\pa_\gamma \pa_\delta
 +
s_{\gamma\delta}.
 +
\end{align}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gw18"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4: Gauge decomposition===
 +
Find the gauge transformations for the scalar, vector and tensor perturbations.
 +
 +
'''HINT:'''
 +
The gauge transformation $x\to x+\xi$ changes the full metric perturbation as
 +
\[h_{\mu\nu}\to h_{\mu\nu}
 +
-\pa_\mu \xi_{\nu}-\pa_\nu \xi_\mu.\]
 +
Then
 +
\begin{align}
 +
\Phi\equiv h_{00}&\to \Phi- \pa_0 \xi_0;\\
 +
w_\alpha\equiv h_{0\alpha}&\to
 +
w_{\alpha}+\pa_0 \xi_{\alpha}+\pa_\alpha \xi_0;\\
 +
\Psi=\tfrac16 h^\alpha_\alpha &\to
 +
\Psi+\tfrac13 \pa_\alpha \xi_\alpha;\\
 +
s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta}
 +
-\Psi \eta_{\alpha\beta})&\to
 +
s_{\alpha\beta}-\pa_{(\alpha}\xi_{\beta)}
 +
-\tfrac13 \eta_{\alpha\beta}\pa_\gamma \xi_\gamma
 +
\end{align}
 +
<!--<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>--></div>
 +
 +
 +
 +
<div id="gw19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5: Synchronous gauge===
 +
This one is equivalent to Gaussian normal coordinates and is fixed by setting
 +
\begin{equation}
 +
\Phi=0,\qquad w^\alpha=0.
 +
\end{equation}
 +
Write the explicit coordinate transformations and the metric in this gauge.
 +
 +
'''HINT:'''
 +
$ds^{2}=dt^{2}
 +
-(\delta_{\alpha\beta}-h_{\alpha\beta})
 +
dx^\alpha dx^\beta$
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">From the gauge transformations the equations for $x^\mu (x)$ are
 +
\begin{align}
 +
&\pa_0 \xi^0 =\tfrac12 \Phi;\\
 +
&\pa_0 \xi_\alpha= w_\alpha-\pa_\alpha \xi_0,
 +
\end{align}
 +
and why the gauge is named synchronous is obvious from the attractive form of the metric in it:
 +
\begin{equation}
 +
ds^{2}=dt^{2}
 +
-(\delta_{\alpha\beta}-h_{\alpha\beta})
 +
dx^\alpha dx^\beta.
 +
\end{equation}
 +
Note, that this gauge (frame of reference) can always be chosen whenever $|h^{\mu\nu}|\ll 1$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gw20"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6: Transverse gauge===
 +
This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that
 +
\begin{equation}
 +
\pa_\alpha s^{\alpha\beta}=0,\qquad
 +
\pa_\alpha w^\alpha =0.
 +
\end{equation}
 +
Find the equations for $\xi^\mu$ that fix the transverse gauge.
 +
 +
'''HINT:'''
 +
$\triangle \xi_\beta
 +
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha
 +
=\pa_\alpha s_{\alpha\beta},\quad
 +
\triangle \xi_0 =-\pa_\alpha w_\alpha
 +
-\pa_0 \pa_\alpha \xi_\alpha$
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The first condition implies
 +
\[0=\pa_\alpha s_{\alpha\beta}'
 +
=\pa_\alpha s_{\alpha\beta}-\tfrac{1}{2}
 +
(\pa_\alpha \pa_\alpha \xi_\beta
 +
+\pa_\alpha \pa_\beta \xi_\alpha)
 +
+\tfrac13 \pa_{\beta}\pa_{\alpha}\xi_\alpha
 +
=\tfrac12 \big[\pa_\alpha s_{\alpha\beta}
 +
-(\triangle \xi_\beta
 +
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha)\big],\]
 +
and the second
 +
\[0=\pa_{\alpha}w_{\alpha}'=\pa_{\alpha}w_\alpha
 +
+\pa_\alpha \pa_0 \xi_\alpha
 +
+\pa_\alpha \pa_\alpha \xi_0
 +
=\pa_\alpha w_\alpha +
 +
(\triangle \xi_0 +\pa_0 \pa_\alpha \xi_\alpha).\]
 +
The solution of the first (three) equation(s)
 +
\[\triangle \xi_\beta
 +
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha
 +
=\pa_\alpha s_{\alpha\beta}\]
 +
gives $\xi^\alpha$, then from the second equation
 +
\[\triangle \xi_0 =-\pa_\alpha w_\alpha
 +
-\pa_0 \pa_\alpha \xi_\alpha\]
 +
one can find $\xi^0$.</p>
 +
  </div>
 +
</div></div>

Revision as of 13:25, 26 December 2012



The general equations \[G_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}\]

are valid in any coordinate frame, in which the metric obeys (\ref{WFL}), so\footnote{In addition to global Lorentz transformations, which are symmetries of the Minkowski background, or in general the isometries of the background spacetime.} we have the freedom to make coordinate transformation

\[x^{\mu}\to {x'}^{\mu}=x^{\mu}+\xi^{\mu}(x),\] with four arbitrary functions $\xi^\mu$, which are of the first order by $h_{\mu\nu}$.



Problem 1: Gauge transformations

Find $h_{\mu\nu}$ in the new (primed) coordinates; show that curvature tensor and its contractions are gauge invariant and do not change their functional form.



In a given frame the metric perturbation $h_{\mu\nu}$ can be decomposed into pieces which transform under spatial rotations as scalars, vectors and tensors (the irreducible representations of the rotation group $SO(3)$) in the following way (spatial components are denoted by Greek indices from the beginning of the alphabet $\alpha,\beta,\gamma\ldots=1,2,3$): \begin{align} h_{00}&=2\Phi;\\ h_{0\alpha}&=-w_{\alpha};\\ h_{\alpha\beta}&=2\big( s_{\alpha\beta} +\Psi\eta_{\alpha\beta}\big), \end{align} where $h_{\alpha\beta}$ is further decomposed in such a way that $s_{ij}$ is traceless and $\Psi$ encodes the trace: \begin{align} h\equiv h_{\alpha}^{\alpha} &=\eta^{\alpha\beta}h_{\alpha\beta} =0+2\Psi \delta^{\alpha}_{\alpha}=6\Psi;\\ \Psi&=\tfrac{1}{6}h;\\ s_{\alpha\beta}&=\tfrac{1}{2}\big(h_{\alpha\beta} -\tfrac{1}{6}h\; \eta_{\alpha\beta}\big). \end{align} Thus the metric takes the form \[ds^{2}=(1+2\Phi)dt^2 -2w_{\alpha}dt\,dx^{\alpha} -\big[(1-2\Psi)\eta_{\alpha\beta} -2s_{\alpha\beta}\big]dx^\alpha dx^\beta\]



Problem 2: Particle's motion, gravo-magnetic and gravo-electric fields

Write down geodesic equations for a particle in the weak field limit in terms of fields $\Phi$, $w_\alpha$, $h_{\alpha\beta}$. What are the first terms of expansion by $v/c$ in the non-relativistic limit?

HINT: The equations of motion for a particle with $u^{\mu}=E(1,\mathbf{v})$ are$*$ \begin{align} \frac{dE}{dt}&=-E\big[\pa_0 \Phi +2\pa_\alpha \Phi\; v^\alpha -\big(\pa_{(\alpha} w_{\beta)} +\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big) v^\alpha v^\beta \big] ;\\ \frac{dp^\alpha}{dt}&=-E\big[ \pa_\alpha \Phi+\pa_0 w_\alpha +2(\pa_{[\alpha}w_{\beta]} +\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta} -\big( \pa_{(\alpha} h_{\beta)\gamma} -\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big) v^\beta v^\gamma \big]. \end{align} We can define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields \begin{align} G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\ H^\alpha&=\varepsilon^{\alpha\beta\gamma} \pa_\beta w_\gamma, \end{align} so that the first terms in the equation of motion reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.

$^*$(Anti-)symmetrization is defined with the $1/2$ factors.


Problem 3: Dynamical degrees of freedom

Derive the Einstein equations for the scalar $\Phi,\Psi$, vector $w^\alpha$ and tensor $s_{\alpha\beta}$ perturbations. Which of them are dynamical?

HINT: The Einstein tensor is \begin{align} G_{00}&=-2\triangle \Psi -\pa_\alpha \pa_\beta s_{\alpha\beta};\\ G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi +\tfrac12 \triangle w^\alpha -\tfrac12 \pa_\alpha \pa_\beta w^\beta +\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\ G_{\alpha\beta}& =(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta) (\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-\\ &-\pa_0 \pa_{(\alpha}w_{\beta)} -\delta_{\alpha\beta}\pa_0 \pa_\gamma w^\gamma -\square s_{\alpha\beta} -\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma} +\delta_{\alpha\beta}\pa_\gamma \pa_\delta s_{\gamma\delta}, \end{align} where $\triangle\equiv\pa_\alpha \pa_\alpha$, $\square \equiv\pa_0^2 -\triangle$ and summation is assumed over any repeated indices.

None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.


Problem 4: Gauge decomposition

Find the gauge transformations for the scalar, vector and tensor perturbations.

HINT: The gauge transformation $x\to x+\xi$ changes the full metric perturbation as \[h_{\mu\nu}\to h_{\mu\nu} -\pa_\mu \xi_{\nu}-\pa_\nu \xi_\mu.\] Then \begin{align} \Phi\equiv h_{00}&\to \Phi- \pa_0 \xi_0;\\ w_\alpha\equiv h_{0\alpha}&\to w_{\alpha}+\pa_0 \xi_{\alpha}+\pa_\alpha \xi_0;\\ \Psi=\tfrac16 h^\alpha_\alpha &\to \Psi+\tfrac13 \pa_\alpha \xi_\alpha;\\ s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta} -\Psi \eta_{\alpha\beta})&\to s_{\alpha\beta}-\pa_{(\alpha}\xi_{\beta)} -\tfrac13 \eta_{\alpha\beta}\pa_\gamma \xi_\gamma \end{align}


Problem 5: Synchronous gauge

This one is equivalent to Gaussian normal coordinates and is fixed by setting \begin{equation} \Phi=0,\qquad w^\alpha=0. \end{equation} Write the explicit coordinate transformations and the metric in this gauge.

HINT: $ds^{2}=dt^{2} -(\delta_{\alpha\beta}-h_{\alpha\beta}) dx^\alpha dx^\beta$


Problem 6: Transverse gauge

This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that \begin{equation} \pa_\alpha s^{\alpha\beta}=0,\qquad \pa_\alpha w^\alpha =0. \end{equation} Find the equations for $\xi^\mu$ that fix the transverse gauge.

HINT: $\triangle \xi_\beta +\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha =\pa_\alpha s_{\alpha\beta},\quad \triangle \xi_0 =-\pa_\alpha w_\alpha -\pa_0 \pa_\alpha \xi_\alpha$