Difference between revisions of "Gauge transformations and degrees of freedom"

From Universe in Problems
Jump to: navigation, search
(Problem 1: Gauge transformations)
Line 90: Line 90:
 
The equations of motion for a particle with $u^{\mu}=E(1,\mathbf{v})$ are$*$
 
The equations of motion for a particle with $u^{\mu}=E(1,\mathbf{v})$ are$*$
 
\begin{align}
 
\begin{align}
\frac{dE}{dt}&=-E\big[\pa_0 \Phi
+
\frac{dE}{dt}&=-E\big[\partial_0 \Phi
+2\pa_\alpha \Phi\; v^\alpha
+
+2\partial_\alpha \Phi\; v^\alpha
-\big(\pa_{(\alpha} w_{\beta)}
+
-\big(\partial_{(\alpha} w_{\beta)}
+\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big)
+
+\tfrac{1}{2}\partial_0 h_{\alpha\beta}\big)
 
v^\alpha v^\beta \big] ;\\
 
v^\alpha v^\beta \big] ;\\
 
\frac{dp^\alpha}{dt}&=-E\big[
 
\frac{dp^\alpha}{dt}&=-E\big[
\pa_\alpha \Phi+\pa_0 w_\alpha
+
\partial_\alpha \Phi+\partial_0 w_\alpha
+2(\pa_{[\alpha}w_{\beta]}
+
+2(\partial_{[\alpha}w_{\beta]}
+\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta}
+
+\tfrac12 \partial_0 h_{\alpha\beta})v^{\beta}
 
-\big(
 
-\big(
\pa_{(\alpha} h_{\beta)\gamma}
+
\partial_{(\alpha} h_{\beta)\gamma}
-\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big)
+
-\tfrac{1}{2}\partial_\alpha h_{\beta\gamma}\big)
 
v^\beta v^\gamma \big].
 
v^\beta v^\gamma \big].
 
\end{align}
 
\end{align}
 
We can define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields
 
We can define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields
 
\begin{align}
 
\begin{align}
G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\
+
G^\alpha&=-\partial_\alpha \Phi -\partial_0 w_\alpha;\\
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
\pa_\beta w_\gamma,
+
\partial_\beta w_\gamma,
 
\end{align}
 
\end{align}
 
so that the first terms in the equation of motion reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.
 
so that the first terms in the equation of motion reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.
Line 118: Line 118:
 
     <p style="text-align: left;">Calculating the Christoffel symbols, we get
 
     <p style="text-align: left;">Calculating the Christoffel symbols, we get
 
\begin{align}
 
\begin{align}
{\Gamma^0}_{00}&=\pa_{0}\Phi;\\
+
{\Gamma^0}_{00}&=\partial_{0}\Phi;\\
 
{\Gamma^\alpha}_{00}&
 
{\Gamma^\alpha}_{00}&
=\pa_{\alpha}\Phi+\pa_0 w_\alpha;\\
+
=\partial_{\alpha}\Phi+\partial_0 w_\alpha;\\
 
{\Gamma^0}_{\alpha 0}&
 
{\Gamma^0}_{\alpha 0}&
=\pa_{\alpha}\Phi;\\
+
=\partial_{\alpha}\Phi;\\
 
{\Gamma^0}_{\alpha\beta}&
 
{\Gamma^0}_{\alpha\beta}&
=-\pa_{(\alpha}w_{\beta)}
+
=-\partial_{(\alpha}w_{\beta)}
-\tfrac{1}{2}\pa_0 h_{\alpha\beta};\\
+
-\tfrac{1}{2}\partial_0 h_{\alpha\beta};\\
 
{\Gamma^\alpha}_{0\beta}&
 
{\Gamma^\alpha}_{0\beta}&
=\tfrac{1}{2}\pa_0 h_{\alpha\beta}
+
=\tfrac{1}{2}\partial_0 h_{\alpha\beta}
+\pa_{[\alpha}w_{\beta]};\\
+
+\partial_{[\alpha}w_{\beta]};\\
 
{\Gamma^\alpha}_{\beta\gamma}&
 
{\Gamma^\alpha}_{\beta\gamma}&
=\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}
+
=\tfrac{1}{2}\partial_\alpha h_{\beta\gamma}
-\pa_{[\alpha}h_{\beta]\gamma},
+
-\partial_{[\alpha}h_{\beta]\gamma},
 
\end{align}
 
\end{align}
 
where brackets and braces denote (anti-)symmetrization:
 
where brackets and braces denote (anti-)symmetrization:
Line 153: Line 153:
 
On substitution of ${\Gamma^{\lambda}}_{\mu\nu}$, in explicit form we obtain
 
On substitution of ${\Gamma^{\lambda}}_{\mu\nu}$, in explicit form we obtain
 
\begin{align}
 
\begin{align}
\frac{dE}{dt}&=-E\big[\pa_0 \Phi
+
\frac{dE}{dt}&=-E\big[\partial_0 \Phi
+2\pa_\alpha \Phi\; v^\alpha
+
+2\partial_\alpha \Phi\; v^\alpha
-\big(\pa_{(\alpha} w_{\beta)}
+
-\big(\partial_{(\alpha} w_{\beta)}
+\tfrac{1}{2}\pa_0 h_{\alpha\beta}\big)
+
+\tfrac{1}{2}\partial_0 h_{\alpha\beta}\big)
 
v^\alpha v^\beta \big] ;\\
 
v^\alpha v^\beta \big] ;\\
 
\frac{dp^\alpha}{dt}&=-E\big[
 
\frac{dp^\alpha}{dt}&=-E\big[
\pa_\alpha \Phi+\pa_0 w_\alpha
+
\partial_\alpha \Phi+\partial_0 w_\alpha
+2(\pa_{[\alpha}w_{\beta]}
+
+2(\partial_{[\alpha}w_{\beta]}
+\tfrac12 \pa_0 h_{\alpha\beta})v^{\beta}
+
+\tfrac12 \partial_0 h_{\alpha\beta})v^{\beta}
 
-\big(
 
-\big(
\pa_{(\alpha} h_{\beta)\gamma}
+
\partial_{(\alpha} h_{\beta)\gamma}
-\tfrac{1}{2}\pa_\alpha h_{\beta\gamma}\big)
+
-\tfrac{1}{2}\partial_\alpha h_{\beta\gamma}\big)
 
v^\beta v^\gamma \big].
 
v^\beta v^\gamma \big].
 
\end{align}
 
\end{align}
 
If we define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields as
 
If we define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields as
 
\begin{align}
 
\begin{align}
G^\alpha&=-\pa_\alpha \Phi -\pa_0 w_\alpha;\\
+
G^\alpha&=-\partial_\alpha \Phi -\partial_0 w_\alpha;\\
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
 
H^\alpha&=\varepsilon^{\alpha\beta\gamma}
\pa_\beta w_\gamma,
+
\partial_\beta w_\gamma,
 
\end{align}
 
\end{align}
 
the first terms appear to be represented in a very suggestive form, reminiscent of electrodynamics (remember that $E\approx m(1+v^2/2)$):
 
the first terms appear to be represented in a very suggestive form, reminiscent of electrodynamics (remember that $E\approx m(1+v^2/2)$):
Line 177: Line 177:
 
\frac{1}{E}\frac{d \mathbf{p}}{dt}
 
\frac{1}{E}\frac{d \mathbf{p}}{dt}
 
&=\mathbf{G}+\mathbf{v}\times \mathbf{H}
 
&=\mathbf{G}+\mathbf{v}\times \mathbf{H}
+\mathbf{e}^{\alpha}\pa_0 h_{\alpha\beta}v^\beta
+
+\mathbf{e}^{\alpha}\partial_0 h_{\alpha\beta}v^\beta
 
+O(v^2).
 
+O(v^2).
 
\end{align}
 
\end{align}
Line 195: Line 195:
 
\begin{align}
 
\begin{align}
 
G_{00}&=-2\triangle \Psi
 
G_{00}&=-2\triangle \Psi
-\pa_\alpha \pa_\beta s_{\alpha\beta};\\
+
-\partial_\alpha \partial_\beta s_{\alpha\beta};\\
G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi
+
G_{0\alpha}&=3\partial_0 \partial_\alpha \Psi
 
+\tfrac12 \triangle  w^\alpha
 
+\tfrac12 \triangle  w^\alpha
-\tfrac12 \pa_\alpha \pa_\beta w^\beta
+
-\tfrac12 \partial_\alpha \partial_\beta w^\beta
+\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\
+
+\tfrac12 \partial_0 \partial_\beta h_{\alpha\beta};\\
 
G_{\alpha\beta}&
 
G_{\alpha\beta}&
=(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta)
+
=(\delta_{\alpha\beta}\triangle -\partial_\alpha \partial_\beta)
(\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-\\
+
(\Phi+\Psi)-2\delta_{\alpha\beta}\partial_0^2 \Psi-\\
&-\pa_0 \pa_{(\alpha}w_{\beta)}
+
&-\partial_0 \partial_{(\alpha}w_{\beta)}
-\delta_{\alpha\beta}\pa_0 \pa_\gamma w^\gamma
+
-\delta_{\alpha\beta}\partial_0 \partial_\gamma w^\gamma
 
-\square s_{\alpha\beta}
 
-\square s_{\alpha\beta}
-\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma}
+
-\tfrac12 \partial_{\gamma}\partial_{(\alpha}s_{\beta)\gamma}
+\delta_{\alpha\beta}\pa_\gamma \pa_\delta
+
+\delta_{\alpha\beta}\partial_\gamma \partial_\delta
 
s_{\gamma\delta},
 
s_{\gamma\delta},
 
\end{align}
 
\end{align}
where $\triangle\equiv\pa_\alpha \pa_\alpha$, $\square \equiv\pa_0^2 -\triangle$ and summation is assumed over any repeated indices.
+
where $\triangle\equiv\partial_\alpha \partial_\alpha$, $\square \equiv\partial_0^2 -\triangle$ and summation is assumed over any repeated indices.
  
 
None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.
 
None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.
Line 218: Line 218:
 
     <p style="text-align: left;">First note, that $\eta_{\alpha\beta}=-\delta_{\alpha\beta}$, so in the chosen frame $w_{\alpha}=-w^{\alpha}$. Straightforward calculation gives the Riemann tensor in the first order
 
     <p style="text-align: left;">First note, that $\eta_{\alpha\beta}=-\delta_{\alpha\beta}$, so in the chosen frame $w_{\alpha}=-w^{\alpha}$. Straightforward calculation gives the Riemann tensor in the first order
 
\begin{align}
 
\begin{align}
R_{0\alpha0\beta}&=-\pa_\alpha \pa_\beta \Phi
+
R_{0\alpha0\beta}&=-\partial_\alpha \partial_\beta \Phi
-\pa_0 \pa_{(\alpha}w_{\beta)}
+
-\partial_0 \partial_{(\alpha}w_{\beta)}
-\tfrac{1}{2}\pa_0^2 h_{\alpha\beta};\\
+
-\tfrac{1}{2}\partial_0^2 h_{\alpha\beta};\\
 
R_{0\alpha\gamma\beta}&
 
R_{0\alpha\gamma\beta}&
=\pa_\alpha \pa_{[\beta}w_{\gamma]}
+
=\partial_\alpha \partial_{[\beta}w_{\gamma]}
-\pa_{0}\pa_{[\gamma}h_{\beta]\alpha};\\
+
-\partial_{0}\partial_{[\gamma}h_{\beta]\alpha};\\
 
R_{\delta\alpha\gamma\beta}&
 
R_{\delta\alpha\gamma\beta}&
=\pa_\alpha \pa_{[\gamma}h_{\beta]\delta}
+
=\partial_\alpha \partial_{[\gamma}h_{\beta]\delta}
-\pa_{\delta}\pa_{[\gamma}h_{\beta]\alpha};
+
-\partial_{\delta}\partial_{[\gamma}h_{\beta]\alpha};
 
\end{align}
 
\end{align}
 
Ricci tensor
 
Ricci tensor
 
\begin{align}
 
\begin{align}
R_{00}&=\triangle \Phi -\pa_0 \nabla \mathbf{w}
+
R_{00}&=\triangle \Phi -\partial_0 \nabla \mathbf{w}
-3\pa_0^2 \Psi;\\
+
-3\partial_0^2 \Psi;\\
R_{0\gamma}&=3\pa_0 \pa_\gamma \Psi
+
R_{0\gamma}&=3\partial_0 \partial_\gamma \Psi
 
+\tfrac12 \triangle w^\gamma
 
+\tfrac12 \triangle w^\gamma
-\tfrac12 \pa_\gamma \nabla \mathbf{w}
+
-\tfrac12 \partial_\gamma \nabla \mathbf{w}
+\tfrac12 \pa_0 \pa_\alpha h_{\alpha\gamma};\\
+
+\tfrac12 \partial_0 \partial_\alpha h_{\alpha\gamma};\\
 
R_{\alpha\beta}&=
 
R_{\alpha\beta}&=
-\pa_\alpha \pa_\beta (\Phi+\Psi)
+
-\partial_\alpha \partial_\beta (\Phi+\Psi)
-\pa_0 \pa_{(\alpha}w_{\beta)}
+
-\partial_0 \partial_{(\alpha}w_{\beta)}
 
-\tfrac12 \square h_{\alpha\beta}
 
-\tfrac12 \square h_{\alpha\beta}
-2\pa_\gamma \pa_{(\alpha}s_{\beta)\gamma},
+
-2\partial_\gamma \partial_{(\alpha}s_{\beta)\gamma},
 
\end{align}
 
\end{align}
 
where
 
where
\[\nabla \mathbf{w}\equiv\pa_\alpha w^\alpha;\quad
+
\[\nabla \mathbf{w}\equiv\partialrtial_\alpha w^\alpha;\quad
\triangle\equiv\pa_\alpha \pa_\alpha;\quad
+
\triangle\equiv\partialrtial_\alpha \partialrtial_\alpha;\quad
\square \equiv\pa_0^2 -\triangle,\]
+
\square \equiv\partialrtial_0^2 -\triangle,\]
 
and summation is assumed over any repeated indices. Then
 
and summation is assumed over any repeated indices. Then
 
\begin{align}
 
\begin{align}
 
R_{\alpha\alpha}=-\triangle(\Phi+\Psi)
 
R_{\alpha\alpha}=-\triangle(\Phi+\Psi)
 
+3\square \Psi
 
+3\square \Psi
+\pa_0 \nabla\mathbf{w}
+
+\partialrtial_0 \nabla\mathbf{w}
-2\pa_\alpha \pa_\beta s_{\alpha\beta}
+
-2\partial_\alpha \partial_\beta s_{\alpha\beta}
 
\end{align}
 
\end{align}
 
and the Einstein tensor is
 
and the Einstein tensor is
 
\begin{align}
 
\begin{align}
 
G_{00}&=-2\triangle \Psi
 
G_{00}&=-2\triangle \Psi
-\pa_\alpha \pa_\beta s_{\alpha\beta};\\
+
-\partial_\alpha \partial_\beta s_{\alpha\beta};\\
G_{0\alpha}&=3\pa_0 \pa_\alpha \Psi
+
G_{0\alpha}&=3\partial_0 \partial_\alpha \Psi
 
+\tfrac12 \triangle  w^\alpha
 
+\tfrac12 \triangle  w^\alpha
-\tfrac12 \pa_\alpha \nabla\mathbf{w}
+
-\tfrac12 \partial_\alpha \nabla\mathbf{w}
+\tfrac12 \pa_0 \pa_\beta h_{\alpha\beta};\\
+
+\tfrac12 \partial_0 \partial_\beta h_{\alpha\beta};\\
 
G_{\alpha\beta}&
 
G_{\alpha\beta}&
=(\delta_{\alpha\beta}\triangle -\pa_\alpha \pa_\beta)
+
=(\delta_{\alpha\beta}\triangle -\partial_\alpha \partial_\beta)
(\Phi+\Psi)-2\delta_{\alpha\beta}\pa_0^2 \Psi-
+
(\Phi+\Psi)-2\delta_{\alpha\beta}\partial_0^2 \Psi-
 
\notag\\
 
\notag\\
&-\pa_0 \pa_{(\alpha}w_{\beta)}
+
&-\partial_0 \partial_{(\alpha}w_{\beta)}
-\delta_{\alpha\beta}\pa_0 \nabla \mathbf{w}
+
-\delta_{\alpha\beta}\partial_0 \nabla \mathbf{w}
 
-\square s_{\alpha\beta}
 
-\square s_{\alpha\beta}
-\tfrac12 \pa_{\gamma}\pa_{(\alpha}s_{\beta)\gamma}
+
-\tfrac12 \partial_{\gamma}\partial_{(\alpha}s_{\beta)\gamma}
+\delta_{\alpha\beta}\pa_\gamma \pa_\delta
+
+\delta_{\alpha\beta}\partial_\gamma \partial_\delta
 
s_{\gamma\delta}.
 
s_{\gamma\delta}.
 
\end{align}</p>
 
\end{align}</p>
Line 285: Line 285:
 
The gauge transformation $x\to x+\xi$ changes the full metric perturbation as
 
The gauge transformation $x\to x+\xi$ changes the full metric perturbation as
 
\[h_{\mu\nu}\to h_{\mu\nu}
 
\[h_{\mu\nu}\to h_{\mu\nu}
-\pa_\mu \xi_{\nu}-\pa_\nu \xi_\mu.\]
+
-\partial_\mu \xi_{\nu}-\partial_\nu \xi_\mu.\]
 
Then
 
Then
 
\begin{align}
 
\begin{align}
\Phi\equiv h_{00}&\to \Phi- \pa_0 \xi_0;\\
+
\Phi\equiv h_{00}&\to \Phi- \partial_0 \xi_0;\\
 
w_\alpha\equiv h_{0\alpha}&\to
 
w_\alpha\equiv h_{0\alpha}&\to
w_{\alpha}+\pa_0 \xi_{\alpha}+\pa_\alpha \xi_0;\\
+
w_{\alpha}+\partial_0 \xi_{\alpha}+\partial_\alpha \xi_0;\\
 
\Psi=\tfrac16 h^\alpha_\alpha &\to
 
\Psi=\tfrac16 h^\alpha_\alpha &\to
\Psi+\tfrac13 \pa_\alpha \xi_\alpha;\\
+
\Psi+\tfrac13 \partial_\alpha \xi_\alpha;\\
 
s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta}
 
s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta}
 
-\Psi \eta_{\alpha\beta})&\to
 
-\Psi \eta_{\alpha\beta})&\to
s_{\alpha\beta}-\pa_{(\alpha}\xi_{\beta)}
+
s_{\alpha\beta}-\partial_{(\alpha}\xi_{\beta)}
-\tfrac13 \eta_{\alpha\beta}\pa_\gamma \xi_\gamma
+
-\tfrac13 \eta_{\alpha\beta}\partial_\gamma \xi_\gamma
 
\end{align}
 
\end{align}
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 325: Line 325:
 
     <p style="text-align: left;">From the gauge transformations the equations for $x^\mu (x)$ are
 
     <p style="text-align: left;">From the gauge transformations the equations for $x^\mu (x)$ are
 
\begin{align}
 
\begin{align}
&\pa_0 \xi^0 =\tfrac12 \Phi;\\
+
&\partial_0 \xi^0 =\tfrac12 \Phi;\\
&\pa_0 \xi_\alpha= w_\alpha-\pa_\alpha \xi_0,
+
&\partial_0 \xi_\alpha= w_\alpha-\partial_\alpha \xi_0,
 
\end{align}
 
\end{align}
 
and why the gauge is named synchronous is obvious from the attractive form of the metric in it:
 
and why the gauge is named synchronous is obvious from the attractive form of the metric in it:
Line 345: Line 345:
 
This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that
 
This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that
 
\begin{equation}
 
\begin{equation}
\pa_\alpha s^{\alpha\beta}=0,\qquad
+
\partial_\alpha s^{\alpha\beta}=0,\qquad
\pa_\alpha w^\alpha =0.
+
\partial_\alpha w^\alpha =0.
 
\end{equation}
 
\end{equation}
 
Find the equations for $\xi^\mu$ that fix the transverse gauge.
 
Find the equations for $\xi^\mu$ that fix the transverse gauge.
Line 352: Line 352:
 
'''HINT:'''
 
'''HINT:'''
 
$\triangle \xi_\beta
 
$\triangle \xi_\beta
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha
+
+\tfrac13 \partial_\alpha \partial_\beta \xi_\alpha
=\pa_\alpha s_{\alpha\beta},\quad
+
=\partial_\alpha s_{\alpha\beta},\quad
\triangle \xi_0 =-\pa_\alpha w_\alpha
+
\triangle \xi_0 =-\partial_\alpha w_\alpha
-\pa_0 \pa_\alpha \xi_\alpha$
+
-\partial_0 \partial_\alpha \xi_\alpha$
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">The first condition implies
 
     <p style="text-align: left;">The first condition implies
\[0=\pa_\alpha s_{\alpha\beta}'
+
\[0=\partial_\alpha s_{\alpha\beta}'
=\pa_\alpha s_{\alpha\beta}-\tfrac{1}{2}
+
=\partial_\alpha s_{\alpha\beta}-\tfrac{1}{2}
(\pa_\alpha \pa_\alpha \xi_\beta
+
(\partial_\alpha \partial_\alpha \xi_\beta
+\pa_\alpha \pa_\beta \xi_\alpha)
+
+\partial_\alpha \partial_\beta \xi_\alpha)
+\tfrac13 \pa_{\beta}\pa_{\alpha}\xi_\alpha
+
+\tfrac13 \partial_{\beta}\partial_{\alpha}\xi_\alpha
=\tfrac12 \big[\pa_\alpha s_{\alpha\beta}
+
=\tfrac12 \big[\partial_\alpha s_{\alpha\beta}
 
-(\triangle \xi_\beta
 
-(\triangle \xi_\beta
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha)\big],\]
+
+\tfrac13 \partial_\alpha \partial_\beta \xi_\alpha)\big],\]
 
and the second
 
and the second
\[0=\pa_{\alpha}w_{\alpha}'=\pa_{\alpha}w_\alpha
+
\[0=\partial_{\alpha}w_{\alpha}'=\partial_{\alpha}w_\alpha
+\pa_\alpha \pa_0 \xi_\alpha
+
+\partial_\alpha \partial_0 \xi_\alpha
+\pa_\alpha \pa_\alpha \xi_0
+
+\partial_\alpha \partial_\alpha \xi_0
=\pa_\alpha w_\alpha +
+
=\partial_\alpha w_\alpha +
(\triangle \xi_0 +\pa_0 \pa_\alpha \xi_\alpha).\]
+
(\triangle \xi_0 +\partial_0 \partial_\alpha \xi_\alpha).\]
 
The solution of the first (three) equation(s)
 
The solution of the first (three) equation(s)
 
\[\triangle \xi_\beta
 
\[\triangle \xi_\beta
+\tfrac13 \pa_\alpha \pa_\beta \xi_\alpha
+
+\tfrac13 \partial_\alpha \partial_\beta \xi_\alpha
=\pa_\alpha s_{\alpha\beta}\]
+
=\partial_\alpha s_{\alpha\beta}\]
 
gives $\xi^\alpha$, then from the second equation
 
gives $\xi^\alpha$, then from the second equation
\[\triangle \xi_0 =-\pa_\alpha w_\alpha
+
\[\triangle \xi_0 =-\partial_\alpha w_\alpha
-\pa_0 \pa_\alpha \xi_\alpha\]
+
-\partial_0 \partial_\alpha \xi_\alpha\]
 
one can find $\xi^0$.</p>
 
one can find $\xi^0$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 13:37, 26 December 2012



The general equations \[G_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}\] are valid in any coordinate frame, in which the metric obeys eq. 1, so$^*$ we have the freedom to make coordinate transformation \[x^{\mu}\to {x'}^{\mu}=x^{\mu}+\xi^{\mu}(x),\] with four arbitrary functions $\xi^\mu$, which are of the first order by $h_{\mu\nu}$.

$^*$In addition to global Lorentz transformations, which are symmetries of the Minkowski background, or in general the isometries of the background spacetime.


Problem 1: Gauge transformations

Find $h_{\mu\nu}$ in the new (primed) coordinates; show that curvature tensor and its contractions are gauge invariant and do not change their functional form.



In a given frame the metric perturbation $h_{\mu\nu}$ can be decomposed into pieces which transform under spatial rotations as scalars, vectors and tensors (the irreducible representations of the rotation group $SO(3)$) in the following way (spatial components are denoted by Greek indices from the beginning of the alphabet $\alpha,\beta,\gamma\ldots=1,2,3$): \begin{align} h_{00}&=2\Phi;\\ h_{0\alpha}&=-w_{\alpha};\\ h_{\alpha\beta}&=2\big( s_{\alpha\beta} +\Psi\eta_{\alpha\beta}\big), \end{align} where $h_{\alpha\beta}$ is further decomposed in such a way that $s_{ij}$ is traceless and $\Psi$ encodes the trace: \begin{align} h\equiv h_{\alpha}^{\alpha} &=\eta^{\alpha\beta}h_{\alpha\beta} =0+2\Psi \delta^{\alpha}_{\alpha}=6\Psi;\\ \Psi&=\tfrac{1}{6}h;\\ s_{\alpha\beta}&=\tfrac{1}{2}\big(h_{\alpha\beta} -\tfrac{1}{6}h\; \eta_{\alpha\beta}\big). \end{align} Thus the metric takes the form \[ds^{2}=(1+2\Phi)dt^2 -2w_{\alpha}dt\,dx^{\alpha} -\big[(1-2\Psi)\eta_{\alpha\beta} -2s_{\alpha\beta}\big]dx^\alpha dx^\beta\]



Problem 2: Particle's motion, gravo-magnetic and gravo-electric fields

Write down geodesic equations for a particle in the weak field limit in terms of fields $\Phi$, $w_\alpha$, $h_{\alpha\beta}$. What are the first terms of expansion by $v/c$ in the non-relativistic limit?

HINT: The equations of motion for a particle with $u^{\mu}=E(1,\mathbf{v})$ are$*$ \begin{align} \frac{dE}{dt}&=-E\big[\partial_0 \Phi +2\partial_\alpha \Phi\; v^\alpha -\big(\partial_{(\alpha} w_{\beta)} +\tfrac{1}{2}\partial_0 h_{\alpha\beta}\big) v^\alpha v^\beta \big] ;\\ \frac{dp^\alpha}{dt}&=-E\big[ \partial_\alpha \Phi+\partial_0 w_\alpha +2(\partial_{[\alpha}w_{\beta]} +\tfrac12 \partial_0 h_{\alpha\beta})v^{\beta} -\big( \partial_{(\alpha} h_{\beta)\gamma} -\tfrac{1}{2}\partial_\alpha h_{\beta\gamma}\big) v^\beta v^\gamma \big]. \end{align} We can define the gravo-electric $G^\alpha$ and gravo-magnetic $H^\alpha$ fields \begin{align} G^\alpha&=-\partial_\alpha \Phi -\partial_0 w_\alpha;\\ H^\alpha&=\varepsilon^{\alpha\beta\gamma} \partial_\beta w_\gamma, \end{align} so that the first terms in the equation of motion reproduce the familiar Lorentz force of electrodynamics, with electric and magnetic fields replaced by gravo-electric and gravo-magnetic. In general there are additional terms even linear by $v$, but e.g. in a stationary field they vanish, so in the first order by $v/c$ the non-relativistic equations of motion look very much like those in electrodynamics in effective fields $G^\alpha$ and $H^\alpha$. The fields $\Phi$ and $w^\alpha$ are the analogues of scalar and vector potentials.

$^*$(Anti-)symmetrization is defined with the $1/2$ factors.


Problem 3: Dynamical degrees of freedom

Derive the Einstein equations for the scalar $\Phi,\Psi$, vector $w^\alpha$ and tensor $s_{\alpha\beta}$ perturbations. Which of them are dynamical?

HINT: The Einstein tensor is \begin{align} G_{00}&=-2\triangle \Psi -\partial_\alpha \partial_\beta s_{\alpha\beta};\\ G_{0\alpha}&=3\partial_0 \partial_\alpha \Psi +\tfrac12 \triangle w^\alpha -\tfrac12 \partial_\alpha \partial_\beta w^\beta +\tfrac12 \partial_0 \partial_\beta h_{\alpha\beta};\\ G_{\alpha\beta}& =(\delta_{\alpha\beta}\triangle -\partial_\alpha \partial_\beta) (\Phi+\Psi)-2\delta_{\alpha\beta}\partial_0^2 \Psi-\\ &-\partial_0 \partial_{(\alpha}w_{\beta)} -\delta_{\alpha\beta}\partial_0 \partial_\gamma w^\gamma -\square s_{\alpha\beta} -\tfrac12 \partial_{\gamma}\partial_{(\alpha}s_{\beta)\gamma} +\delta_{\alpha\beta}\partial_\gamma \partial_\delta s_{\gamma\delta}, \end{align} where $\triangle\equiv\partial_\alpha \partial_\alpha$, $\square \equiv\partial_0^2 -\triangle$ and summation is assumed over any repeated indices.

None of the equations contain time derivatives of the scalar and vector perturbations. So, from the $(00)$ equation, knowing $s_{\alpha\beta}$ and the matter sources $T_{00}$, we can find $\Psi$ (up to boundary conditions, which are assumed to be fixed), thus $\Psi$ is not an independent dynamical field/variable: it does not need initial conditions. Likewise, $\mathbf{w}$ is obtained from the $(0\alpha)$ equations as long as we know $h_{\alpha\beta}$. Finally, from the $(\alpha\beta)$ equations one obtains $\Phi$. So the dynamical degrees of freedom all lie in $s_{\alpha\beta}$.


Problem 4: Gauge decomposition

Find the gauge transformations for the scalar, vector and tensor perturbations.

HINT: The gauge transformation $x\to x+\xi$ changes the full metric perturbation as \[h_{\mu\nu}\to h_{\mu\nu} -\partial_\mu \xi_{\nu}-\partial_\nu \xi_\mu.\] Then \begin{align} \Phi\equiv h_{00}&\to \Phi- \partial_0 \xi_0;\\ w_\alpha\equiv h_{0\alpha}&\to w_{\alpha}+\partial_0 \xi_{\alpha}+\partial_\alpha \xi_0;\\ \Psi=\tfrac16 h^\alpha_\alpha &\to \Psi+\tfrac13 \partial_\alpha \xi_\alpha;\\ s_{\alpha\beta}=\tfrac12 (h_{\alpha\beta} -\Psi \eta_{\alpha\beta})&\to s_{\alpha\beta}-\partial_{(\alpha}\xi_{\beta)} -\tfrac13 \eta_{\alpha\beta}\partial_\gamma \xi_\gamma \end{align}


Problem 5: Synchronous gauge

This one is equivalent to Gaussian normal coordinates and is fixed by setting \begin{equation} \Phi=0,\qquad w^\alpha=0. \end{equation} Write the explicit coordinate transformations and the metric in this gauge.

HINT: $ds^{2}=dt^{2} -(\delta_{\alpha\beta}-h_{\alpha\beta}) dx^\alpha dx^\beta$


Problem 6: Transverse gauge

This is a generalization of the conformal Newtonian or Poisson gauge sometimes used in cosmology, which is fixed by demanding that \begin{equation} \partial_\alpha s^{\alpha\beta}=0,\qquad \partial_\alpha w^\alpha =0. \end{equation} Find the equations for $\xi^\mu$ that fix the transverse gauge.

HINT: $\triangle \xi_\beta +\tfrac13 \partial_\alpha \partial_\beta \xi_\alpha =\partial_\alpha s_{\alpha\beta},\quad \triangle \xi_0 =-\partial_\alpha w_\alpha -\partial_0 \partial_\alpha \xi_\alpha$