Difference between revisions of "Geometry and Destiny"

From Universe in Problems
Jump to: navigation, search
Line 4: Line 4:
  
  
 +
'''''See L.Krauss, M. Turner, [http://arxiv.org/abs/astro-ph/9904020 arXiv:9904020]; B.Ryden, Introduction to cosmology, Addison Wesley; J.E.Felten,R.Isaacman, Rev.Mod.Phys. 58,689 , 1986'''''
  
  
 +
''Presence of the cosmological constant reevaluates standard notions about the connection between geometry and the fate of the Universe. The traditional philosophy of General Relativity is that "Geometry is Destiny", with "geometry" in this context implying openness or closure of the three-space of constant cosmological time.  If energy content is provided by "ordinary" matter (nonrelativistic matter or radiation) this slogan transforms into "Density is Destiny". If the density of matter is less or equal than the critical value (and the Universe is open), then the destiny of Universe is eternal expanding; if the density is greater, and the Universe is closed, then the destiny is recollapse. If the Universe contains cosmological constant (or any energy component with $w<-1/3$) the situation changes radically: an open Universe can recollapse, while a closed Universe can expand forever. Geometry no longer determines the fate of the Universe.''
  
  
<div id=""></div>
+
<div id="DE18_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
As $\Omega_{tot}-1=k/(H^2a^2)$ the sign of $k$ is determined by whether $\Omega_{tot}$ is greater or less than $1$.  A measurement of $\Omega_{tot}$ at any epoch---including the present---determines the geometry of the Universe. However, as opposed to situation with only non-relativistic matter, we can no longer claim that the magnitude of $\Omega_{tot}$ uniquely determines the fate of the Universe. Explain decoupling between $\Omega_{tot}$ and destiny using deceleration parameter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">We know that (see problem \ldots of chapter 2)
 +
\[q=\frac{\Omega_{tot}}{2}+\frac32\sum\limits_i w_i\Omega_i.\]
 +
The sign of deceleration parameter at any given epoch depends upon the equation of state and not on alone. While in the presence of a cosmological constant ($w=-1$), $\Omega_{tot}$ no longer determines the ultimate fate of the Universe.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 22: Line 26:
  
  
<div id=""></div>
+
<div id="DE18_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
Show that decoupling between $\Omega_{tot}$ and destiny of the Universe is due to violation of strong energy condition.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
  
  
<div id=""></div>
+
<div id="DE18_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
Find the maximum value of scale factor for a hypothetical flat Universe with $\Omega_{\Lambda0}<0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The Friedman equation for the considered Universe reads
 +
\[\frac{H^2}{H_0^2}=\Omega_{m0}a^{-3}+\Omega_{\Lambda0}.\]
 +
Condition $H=0$ transforms into
 +
\[a_{\max}=\left(\frac{\Omega_{m0}}{\Omega_{m0}-1}\right)^{1/3}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 50: Line 57:
  
  
<div id=""></div>
+
<div id="DE18_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
For the Universe considered in the previous problem, find the analytical solution $t(a)$ and time of the collapse from $a=a_{\max}$ back down to $a=0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In this case the Friedman equation can be integrated to yield the following analytical solution
 +
\[t=\frac{2}{3H_0\sqrt{\Omega_{m0}-1}}
 +
\arcsin\left(\frac{a}{a_{\max}}\right)^{3/2},\]
 +
\[t_{collapse}
 +
=\frac{2\pi}{3H_0\sqrt{\Omega_{m0}-1}}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 64: Line 75:
  
  
<div id=""></div>
+
<div id="DE18_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
In the flat Universe with $\Omega_{m0}<1$ and positive cosmological constant find the late time asymptotic for the scale factor.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In this case the Friedman equation can be integrated to yield the following analytical solution
 +
    \[t=\frac{2}{3H_0\sqrt{\Omega_{m0}-1}}
 +
\ln\left[\left(\frac{a}{a_{eq}}\right)^{3/2}
 +
+\sqrt{1+\left(\frac{a}{a_{eq}}\right)^3}\right].\]
 +
Here
 +
\[a_{eq}=\left(\frac{\Omega_{m0}}{\Omega_{\Lambda0}}\right)^{1/3}\]
 +
is the scale factor corresponding to equality of densities of matter and cosmological constant. For $a\gg a_{eq}$ this expression is reduced to
 +
\[a(t)\approx
 +
\exp\left(\sqrt{\Omega_{\Lambda0}}H_0t\right).\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 78: Line 97:
  
  
<div id=""></div>
+
<div id="DE18_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
Show that eternal expansion is inevitable if and only if \[\Omega_\Lambda>4\Omega_m\left\{\cos\left[\frac13\arccos(\Omega_m^{-1}-1)+\frac{4\pi}{3}\right]\right\}.\]
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
  
  
<div id=""></div>
+
<div id="DE18_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
Show that if $\Omega_{m0}+\Omega_{\Lambda0}>1$ (positive spatial curvature) and $\Lambda>0$, then it is possible to have a Universe that expands at late times, but without the initial Big Bang ($a=0,\ t=0$).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Friedman equation for a curved Universe with both matter and cosmological constant is
 +
\[\frac{H^2}{H^2_0}=\frac{\Omega_{m0}}{a^3}+\frac{1-\Omega_{m0}-\Omega_{\Lambda0}}{a^2}+\Omega_{\Lambda0}.\]
 +
If $\Omega_{m0}+\Omega_{\Lambda0}>1$, the value of $H^2$ is positive for small and large values of scale factor $a$. But for intermediate values of $a$ we have $H^2<0$, thus this range is forbidden. Let us start out with $a\gg1$, $H<0$ (contracting phase of low density, $\Lambda$-dominated state). As the Universe contracts, negative curvature term becomes dominant, causing the contraction to stop at a minimum scale factor $a_{\min}$, equal to the real root of the equation
 +
\[\frac{\Omega_{m0}}{a^3}+\frac{1-\Omega_{m0}-\Omega_{\Lambda0}}{a^2}+\Omega_{\Lambda0}=0.\]
 +
Thus it is possible to have a Universe that expands at late time, but without a Big Bang.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 106: Line 129:
  
  
<div id=""></div>
+
<div id="DE18_8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
Show that collapse of the Universe is possible if the following conditions are satisfied:
<div class="NavFrame collapsed">
+
<br/>
 +
'''1.''' Closed ($k>0$) Universe: $\rho_m>2\rho_\Lambda$ when $H=0$.
 +
<br/>
 +
'''2.''' Open, flat ($k\le0$) or closed ($k>0$) Universe: $\rho_\Lambda\le0$.
 +
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
  
  
<div id=""></div>
+
<div id="DE18_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
 
+
Show that eternal expansion of the Universe is possible if the following conditions are satisfied
<div class="NavFrame collapsed">
+
<br/>
  <div class="NavHead">solution</div>
+
'''1.''' Closed ($k>0$) Universe: $\rho_m<2\rho_\Lambda$ before $H=0$.
  <div style="width:100%;" class="NavContent">
+
<br/>
    <p style="text-align: left;"></p>
+
'''2.''' Open or flat ($k\le0$) Universe: $\rho_\Lambda\ge0$.
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
<div class="NavFrame collapsed">
+
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
 
+
 
+
 
+
 
+
<div id=""></div>
+
<div style="border: 1px solid #AAA; padding:5px;">
+
=== Problem 1 ===
+
 
+
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Revision as of 13:51, 1 December 2012



See L.Krauss, M. Turner, arXiv:9904020; B.Ryden, Introduction to cosmology, Addison Wesley; J.E.Felten,R.Isaacman, Rev.Mod.Phys. 58,689 , 1986


Presence of the cosmological constant reevaluates standard notions about the connection between geometry and the fate of the Universe. The traditional philosophy of General Relativity is that "Geometry is Destiny", with "geometry" in this context implying openness or closure of the three-space of constant cosmological time. If energy content is provided by "ordinary" matter (nonrelativistic matter or radiation) this slogan transforms into "Density is Destiny". If the density of matter is less or equal than the critical value (and the Universe is open), then the destiny of Universe is eternal expanding; if the density is greater, and the Universe is closed, then the destiny is recollapse. If the Universe contains cosmological constant (or any energy component with $w<-1/3$) the situation changes radically: an open Universe can recollapse, while a closed Universe can expand forever. Geometry no longer determines the fate of the Universe.


Problem 1

As $\Omega_{tot}-1=k/(H^2a^2)$ the sign of $k$ is determined by whether $\Omega_{tot}$ is greater or less than $1$. A measurement of $\Omega_{tot}$ at any epoch---including the present---determines the geometry of the Universe. However, as opposed to situation with only non-relativistic matter, we can no longer claim that the magnitude of $\Omega_{tot}$ uniquely determines the fate of the Universe. Explain decoupling between $\Omega_{tot}$ and destiny using deceleration parameter.



Problem 1

Show that decoupling between $\Omega_{tot}$ and destiny of the Universe is due to violation of strong energy condition.



Problem 1

Find the maximum value of scale factor for a hypothetical flat Universe with $\Omega_{\Lambda0}<0$.



Problem 1

For the Universe considered in the previous problem, find the analytical solution $t(a)$ and time of the collapse from $a=a_{\max}$ back down to $a=0$.



Problem 1

In the flat Universe with $\Omega_{m0}<1$ and positive cosmological constant find the late time asymptotic for the scale factor.



Problem 1

Show that eternal expansion is inevitable if and only if \[\Omega_\Lambda>4\Omega_m\left\{\cos\left[\frac13\arccos(\Omega_m^{-1}-1)+\frac{4\pi}{3}\right]\right\}.\]



Problem 1

Show that if $\Omega_{m0}+\Omega_{\Lambda0}>1$ (positive spatial curvature) and $\Lambda>0$, then it is possible to have a Universe that expands at late times, but without the initial Big Bang ($a=0,\ t=0$).



Problem 1

Show that collapse of the Universe is possible if the following conditions are satisfied:
1. Closed ($k>0$) Universe: $\rho_m>2\rho_\Lambda$ when $H=0$.
2. Open, flat ($k\le0$) or closed ($k>0$) Universe: $\rho_\Lambda\le0$.



Problem 1

Show that eternal expansion of the Universe is possible if the following conditions are satisfied
1. Closed ($k>0$) Universe: $\rho_m<2\rho_\Lambda$ before $H=0$.
2. Open or flat ($k\le0$) Universe: $\rho_\Lambda\ge0$.