Difference between revisions of "Gravity"

From Universe in Problems
Jump to: navigation, search
(Problem 1)
Line 19: Line 19:
 
<div id="razm29ngr_2"></div>
 
<div id="razm29ngr_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Let's suppose that an elevator's rope breaks and elevator enters the state of free fall state. Is it possible to determine experimentally, been inside, that the elevator is falling near Earth's surface?
 
Let's suppose that an elevator's rope breaks and elevator enters the state of free fall state. Is it possible to determine experimentally, been inside, that the elevator is falling near Earth's surface?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 32: Line 32:
 
<div id="razm29ngr"></div>
 
<div id="razm29ngr"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
Richard Feynman wrote: "The striking similarity of electrical and gravitational forces $\ldots$ has made some people conclude that it would be nice if antimatter repelled matter;". What arguments did Feynman use to demonstrate the inconsistence of this assumption (at least in our world)?
 
Richard Feynman wrote: "The striking similarity of electrical and gravitational forces $\ldots$ has made some people conclude that it would be nice if antimatter repelled matter;". What arguments did Feynman use to demonstrate the inconsistence of this assumption (at least in our world)?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 46: Line 46:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 1 ===
+
=== Problem 4 ===
 
What is the difference (quantitative and qualitative) between the gravitational waves and the electromagnetic ones?
 
What is the difference (quantitative and qualitative) between the gravitational waves and the electromagnetic ones?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 59: Line 59:
 
<div id="razm50"></div>
 
<div id="razm50"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
Find the probability that transition between two atomic states occurs due to gravitation rather than electromagnetic forces.
 
Find the probability that transition between two atomic states occurs due to gravitation rather than electromagnetic forces.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 72: Line 72:
 
<div id="razm50n2"></div>
 
<div id="razm50n2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
In his Lectures on Gravitation Feynman asks: "$\ldots$maybe nature is trying to tell us something new here, maybe we should not try to quantize gravity. Is it possible perhaps that we should not insist on a uniformity of nature that would make everything quantized?". And answers this question. Try to reproduce his arguments.
 
In his Lectures on Gravitation Feynman asks: "$\ldots$maybe nature is trying to tell us something new here, maybe we should not try to quantize gravity. Is it possible perhaps that we should not insist on a uniformity of nature that would make everything quantized?". And answers this question. Try to reproduce his arguments.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 86: Line 86:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 1 ===
+
=== Problem 7 ===
 
Evidently the role of gravitation grows with the mass of a body. Show that gravitation dominates if the number of atoms in the body exceeds the critical value \(N_{cr}\simeq(\alpha/\alpha_G)^{3/2}\simeq10^{54},\) where $\alpha=e^2/(\hbar c)$ is the fine structure constant and $\alpha_G\equiv Gm_p^2/(\hbar c)$ is the ''fine structure constant'' for gravitation, $m_p$ is proton's mass.
 
Evidently the role of gravitation grows with the mass of a body. Show that gravitation dominates if the number of atoms in the body exceeds the critical value \(N_{cr}\simeq(\alpha/\alpha_G)^{3/2}\simeq10^{54},\) where $\alpha=e^2/(\hbar c)$ is the fine structure constant and $\alpha_G\equiv Gm_p^2/(\hbar c)$ is the ''fine structure constant'' for gravitation, $m_p$ is proton's mass.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 99: Line 99:
 
<div id="razm56n1"></div>
 
<div id="razm56n1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
Stars form from gas and dust due to gravitational instability, which forces gas clouds to compress. This process is known as Jeans instability after the  famous English cosmologist James Jeans (1877 -- 1946). What is the physical cause of the Jeans instability?
 
Stars form from gas and dust due to gravitational instability, which forces gas clouds to compress. This process is known as Jeans instability after the  famous English cosmologist James Jeans (1877 -- 1946). What is the physical cause of the Jeans instability?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 113: Line 113:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 1 ===
+
=== Problem 9 ===
 
Observations show that stars form not individually, but in large groups. Young stars are detected in clusters, which contain, usually, several hundreds of stars, which were formed at the same time. Theoretical calculations show, that formation of individual stars is almost impossible. How could this claim be justified?
 
Observations show that stars form not individually, but in large groups. Young stars are detected in clusters, which contain, usually, several hundreds of stars, which were formed at the same time. Theoretical calculations show, that formation of individual stars is almost impossible. How could this claim be justified?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 126: Line 126:
 
<div id="razm57"></div>
 
<div id="razm57"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 10 ===
 
A gas cloud of mass $M$ consisting of molecules of mass $\mu$ is unstable if the gravitational energy exceeds the kinetic energy of thermal motion. Derive the stability condition for the spherically symmetric homogeneous cloud of radius $R$ (the Jeans criterion).
 
A gas cloud of mass $M$ consisting of molecules of mass $\mu$ is unstable if the gravitational energy exceeds the kinetic energy of thermal motion. Derive the stability condition for the spherically symmetric homogeneous cloud of radius $R$ (the Jeans criterion).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 139: Line 139:
 
<div id="razm58"></div>
 
<div id="razm58"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 11 ===
 
Estimate the critical density for a hydrogen cloud of solar mass at temperature $T=1\ 000\ K$.
 
Estimate the critical density for a hydrogen cloud of solar mass at temperature $T=1\ 000\ K$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 152: Line 152:
 
<div id="razm60"></div>
 
<div id="razm60"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 12 ===
 
Compare the gravitational pressure in the centers of the Sun ($\rho=1.4\ g/cm^3$) and the Earth ($\rho=5.5\ g/cm^3$).
 
Compare the gravitational pressure in the centers of the Sun ($\rho=1.4\ g/cm^3$) and the Earth ($\rho=5.5\ g/cm^3$).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 165: Line 165:
 
<div id="razm60n1"></div>
 
<div id="razm60n1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 13 ===
 
Gravitational forces on the Sun are balanced by gas pressure. If pressure ''switches of'' at some moment, Sun would collapse. The time of gravitational collapse is called the dynamic time. Calculate this time for Sun.
 
Gravitational forces on the Sun are balanced by gas pressure. If pressure ''switches of'' at some moment, Sun would collapse. The time of gravitational collapse is called the dynamic time. Calculate this time for Sun.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 178: Line 178:
 
<div id="razm60n2"></div>
 
<div id="razm60n2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 14 ===
 
Show that for any star its dynamic time is approximately equal to the ratio of star's radius to the escape velocity on its surface.  For the Sun, compare this estimate with the exact value obtained in the previous problem.
 
Show that for any star its dynamic time is approximately equal to the ratio of star's radius to the escape velocity on its surface.  For the Sun, compare this estimate with the exact value obtained in the previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 191: Line 191:
 
<div id="razm62"></div>
 
<div id="razm62"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 15 ===
 
Show that stars (and star clusters) have an amazing property of negative thermal capacity: the more it looses energy due to radiation from its surface, the higher is the temperature in its center.
 
Show that stars (and star clusters) have an amazing property of negative thermal capacity: the more it looses energy due to radiation from its surface, the higher is the temperature in its center.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 204: Line 204:
 
<div id="razm62n"></div>
 
<div id="razm62n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 16 ===
 
Along with cosmological redshift the gravitational redshift exists (the effect of general relativity), which consists in change in clock under varying gravitational potential. How could these effects be distinguished qualitatively?
 
Along with cosmological redshift the gravitational redshift exists (the effect of general relativity), which consists in change in clock under varying gravitational potential. How could these effects be distinguished qualitatively?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 221: Line 221:
 
<div id="Okun3"></div>
 
<div id="Okun3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 17 ===
 
Demonstrate, that photon emitted at lower floor of a building due to the transition between two nuclear (atomic) levels could not induce the reverse transition in the same nucleus (atom) at higher floor.
 
Demonstrate, that photon emitted at lower floor of a building due to the transition between two nuclear (atomic) levels could not induce the reverse transition in the same nucleus (atom) at higher floor.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 234: Line 234:
 
<div id="Okun4"></div>
 
<div id="Okun4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 18 ===
 
Consider a photon in static gravitational field. Which characteristics of this photon (energy, frequency, momentum, wavelength) change and which remain the same?
 
Consider a photon in static gravitational field. Which characteristics of this photon (energy, frequency, momentum, wavelength) change and which remain the same?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 247: Line 247:
 
<div id="Okun5"></div>
 
<div id="Okun5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 19 ===
 
Describe the mechanism of light deflection in the gravitational field of the Sun and galaxies.
 
Describe the mechanism of light deflection in the gravitational field of the Sun and galaxies.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 260: Line 260:
 
<div id="Okun6"></div>
 
<div id="Okun6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 20 ===
 
Trace the photon from [[#Okun3|problem ]] with clocks, located along the photon's trajectory (at each floor).
 
Trace the photon from [[#Okun3|problem ]] with clocks, located along the photon's trajectory (at each floor).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 02:35, 11 September 2012



Problem 1

Consider two observers at constant distance $L$ between them, moving far from any mass, i.e. in the absence of gravitational field with constant acceleration $a.$ At $t_0$ the rear observer emits a photon with wavelength $\lambda$. Calculate the redshift that the leading observer will detect.


Problem 2

Let's suppose that an elevator's rope breaks and elevator enters the state of free fall state. Is it possible to determine experimentally, been inside, that the elevator is falling near Earth's surface?


Problem 3

Richard Feynman wrote: "The striking similarity of electrical and gravitational forces $\ldots$ has made some people conclude that it would be nice if antimatter repelled matter;". What arguments did Feynman use to demonstrate the inconsistence of this assumption (at least in our world)?


Problem 4

What is the difference (quantitative and qualitative) between the gravitational waves and the electromagnetic ones?


Problem 5

Find the probability that transition between two atomic states occurs due to gravitation rather than electromagnetic forces.


Problem 6

In his Lectures on Gravitation Feynman asks: "$\ldots$maybe nature is trying to tell us something new here, maybe we should not try to quantize gravity. Is it possible perhaps that we should not insist on a uniformity of nature that would make everything quantized?". And answers this question. Try to reproduce his arguments.


Problem 7

Evidently the role of gravitation grows with the mass of a body. Show that gravitation dominates if the number of atoms in the body exceeds the critical value \(N_{cr}\simeq(\alpha/\alpha_G)^{3/2}\simeq10^{54},\) where $\alpha=e^2/(\hbar c)$ is the fine structure constant and $\alpha_G\equiv Gm_p^2/(\hbar c)$ is the fine structure constant for gravitation, $m_p$ is proton's mass.


Problem 8

Stars form from gas and dust due to gravitational instability, which forces gas clouds to compress. This process is known as Jeans instability after the famous English cosmologist James Jeans (1877 -- 1946). What is the physical cause of the Jeans instability?


Problem 9

Observations show that stars form not individually, but in large groups. Young stars are detected in clusters, which contain, usually, several hundreds of stars, which were formed at the same time. Theoretical calculations show, that formation of individual stars is almost impossible. How could this claim be justified?


Problem 10

A gas cloud of mass $M$ consisting of molecules of mass $\mu$ is unstable if the gravitational energy exceeds the kinetic energy of thermal motion. Derive the stability condition for the spherically symmetric homogeneous cloud of radius $R$ (the Jeans criterion).


Problem 11

Estimate the critical density for a hydrogen cloud of solar mass at temperature $T=1\ 000\ K$.


Problem 12

Compare the gravitational pressure in the centers of the Sun ($\rho=1.4\ g/cm^3$) and the Earth ($\rho=5.5\ g/cm^3$).


Problem 13

Gravitational forces on the Sun are balanced by gas pressure. If pressure switches of at some moment, Sun would collapse. The time of gravitational collapse is called the dynamic time. Calculate this time for Sun.


Problem 14

Show that for any star its dynamic time is approximately equal to the ratio of star's radius to the escape velocity on its surface. For the Sun, compare this estimate with the exact value obtained in the previous problem.


Problem 15

Show that stars (and star clusters) have an amazing property of negative thermal capacity: the more it looses energy due to radiation from its surface, the higher is the temperature in its center.


Problem 16

Along with cosmological redshift the gravitational redshift exists (the effect of general relativity), which consists in change in clock under varying gravitational potential. How could these effects be distinguished qualitatively?


The following four problems are based on the paper [Okun L B "The theory of relativity and the Pythagorean theorem" Phys. Usp. 51 622–631 (2008)]. Here we try to understand the effect of gravity on matter (particles and photons) in terms of Newtonian and relativistic physics, but without relying on the General Theory of Relativity (GTR). Thus the terminology differs from that of GTR, and one should not be surprised to see that i.e. $c$ is not constant. For readers familiar with GTR it would be instructive to reformulate the solutions in its terms and establish the relations between the notions used in both approaches.


Problem 17

Demonstrate, that photon emitted at lower floor of a building due to the transition between two nuclear (atomic) levels could not induce the reverse transition in the same nucleus (atom) at higher floor.


Problem 18

Consider a photon in static gravitational field. Which characteristics of this photon (energy, frequency, momentum, wavelength) change and which remain the same?


Problem 19

Describe the mechanism of light deflection in the gravitational field of the Sun and galaxies.


Problem 20

Trace the photon from problem with clocks, located along the photon's trajectory (at each floor).