Difference between revisions of "Gravity"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Cosmo warm-up|6]]
 
[[Category:Cosmo warm-up|6]]
  
__NOTOC__
+
__TOC__
  
  
 
<div id="razm29ngr_1"></div>
 
<div id="razm29ngr_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 1: Doppler effect with constant acceleration ===
Consider two observers at constant distance $L$ between them, moving far from any mass, i.e. in the absence of gravitational field with constant acceleration $a.$ At $t_0$ the rear observer emits a photon with wavelength $\lambda$. Calculate the redshift that the leading observer will detect.
+
Consider two observers at constant distance $L$ between them, moving far from any mass, i.e. in the absence of gravitational field with constant acceleration $a$. At $t_0$ the rear observer emits a photon with wavelength $\lambda$. Calculate the redshift that the leading observer will detect.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 19: Line 19:
 
<div id="razm29ngr_2"></div>
 
<div id="razm29ngr_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
=== Problem 2: on the Equivalence Principle ===
 
Let's suppose that an elevator's rope breaks and elevator enters the state of free fall state. Is it possible to determine experimentally, been inside, that the elevator is falling near Earth's surface?
 
Let's suppose that an elevator's rope breaks and elevator enters the state of free fall state. Is it possible to determine experimentally, been inside, that the elevator is falling near Earth's surface?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 32: Line 32:
 
<div id="razm29ngr"></div>
 
<div id="razm29ngr"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
=== Problem 3: gravity and antimatter===
Richard Feynman wrote: "The striking similarity of electrical and gravitational forces $\ldots$ has made some people conclude that it would be nice if antimatter repelled matter;". What arguments did Feynman use to demonstrate the inconsistence of this assumption (at least in our world)?
+
Richard Feynman wrote: "The striking similarity of electrical and gravitational forces $\ldots$ has made some people conclude that it would be nice if antimatter repelled matter;". What arguments did Feynman use to demonstrate the inconsistency of this assumption (at least in our world)?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 46: Line 46:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 4 ===
+
=== Problem 4: EM and gravity ===
 
What is the difference (quantitative and qualitative) between the gravitational waves and the electromagnetic ones?
 
What is the difference (quantitative and qualitative) between the gravitational waves and the electromagnetic ones?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 59: Line 59:
 
<div id="razm50"></div>
 
<div id="razm50"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5 ===
+
=== Problem 5: gravity in atoms ===
 
Find the probability that transition between two atomic states occurs due to gravitation rather than electromagnetic forces.
 
Find the probability that transition between two atomic states occurs due to gravitation rather than electromagnetic forces.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 72: Line 72:
 
<div id="razm50n2"></div>
 
<div id="razm50n2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6 ===
+
=== Problem 6: gravity and quantization ===
 
In his Lectures on Gravitation Feynman asks: "$\ldots$maybe nature is trying to tell us something new here, maybe we should not try to quantize gravity. Is it possible perhaps that we should not insist on a uniformity of nature that would make everything quantized?". And answers this question. Try to reproduce his arguments.
 
In his Lectures on Gravitation Feynman asks: "$\ldots$maybe nature is trying to tell us something new here, maybe we should not try to quantize gravity. Is it possible perhaps that we should not insist on a uniformity of nature that would make everything quantized?". And answers this question. Try to reproduce his arguments.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 86: Line 86:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 7 ===
+
=== Problem 7: gravity scale ===
 
Evidently the role of gravitation grows with the mass of a body. Show that gravitation dominates if the number of atoms in the body exceeds the critical value \(N_{cr}\simeq(\alpha/\alpha_G)^{3/2}\simeq10^{54},\) where $\alpha=e^2/(\hbar c)$ is the fine structure constant and $\alpha_G\equiv Gm_p^2/(\hbar c)$ is the ''fine structure constant'' for gravitation, $m_p$ is proton's mass.
 
Evidently the role of gravitation grows with the mass of a body. Show that gravitation dominates if the number of atoms in the body exceeds the critical value \(N_{cr}\simeq(\alpha/\alpha_G)^{3/2}\simeq10^{54},\) where $\alpha=e^2/(\hbar c)$ is the fine structure constant and $\alpha_G\equiv Gm_p^2/(\hbar c)$ is the ''fine structure constant'' for gravitation, $m_p$ is proton's mass.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 99: Line 99:
 
<div id="razm56n1"></div>
 
<div id="razm56n1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
=== Problem 8: Jeans instability ===
 
Stars form from gas and dust due to gravitational instability, which forces gas clouds to compress. This process is known as Jeans instability after the  famous English cosmologist James Jeans (1877 -- 1946). What is the physical cause of the Jeans instability?
 
Stars form from gas and dust due to gravitational instability, which forces gas clouds to compress. This process is known as Jeans instability after the  famous English cosmologist James Jeans (1877 -- 1946). What is the physical cause of the Jeans instability?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 113: Line 113:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 9 ===
+
=== Problem 9: star clusters ===
 
Observations show that stars form not individually, but in large groups. Young stars are detected in clusters, which contain, usually, several hundreds of stars, which were formed at the same time. Theoretical calculations show, that formation of individual stars is almost impossible. How could this claim be justified?
 
Observations show that stars form not individually, but in large groups. Young stars are detected in clusters, which contain, usually, several hundreds of stars, which were formed at the same time. Theoretical calculations show, that formation of individual stars is almost impossible. How could this claim be justified?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 126: Line 126:
 
<div id="razm57"></div>
 
<div id="razm57"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10 ===
+
=== Problem 10: the Jeans criterion ===
 
A gas cloud of mass $M$ consisting of molecules of mass $\mu$ is unstable if the gravitational energy exceeds the kinetic energy of thermal motion. Derive the stability condition for the spherically symmetric homogeneous cloud of radius $R$ (the Jeans criterion).
 
A gas cloud of mass $M$ consisting of molecules of mass $\mu$ is unstable if the gravitational energy exceeds the kinetic energy of thermal motion. Derive the stability condition for the spherically symmetric homogeneous cloud of radius $R$ (the Jeans criterion).
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 139: Line 139:
 
<div id="razm58"></div>
 
<div id="razm58"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11 ===
+
=== Problem 11: typical critical density ===
 
Estimate the critical density for a hydrogen cloud of solar mass at temperature $T=1\ 000\ K$.
 
Estimate the critical density for a hydrogen cloud of solar mass at temperature $T=1\ 000\ K$.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 152: Line 152:
 
<div id="razm60"></div>
 
<div id="razm60"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12 ===
+
=== Problem 12: gravitational pressure ===
 
Compare the gravitational pressure in the centers of the Sun ($\rho=1.4\ g/cm^3$) and the Earth ($\rho=5.5\ g/cm^3$).
 
Compare the gravitational pressure in the centers of the Sun ($\rho=1.4\ g/cm^3$) and the Earth ($\rho=5.5\ g/cm^3$).
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 165: Line 165:
 
<div id="razm60n1"></div>
 
<div id="razm60n1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13 ===
+
=== Problem 13: the dynamic time ===
 
Gravitational forces on the Sun are balanced by gas pressure. If pressure ''switches of'' at some moment, Sun would collapse. The time of gravitational collapse is called the dynamic time. Calculate this time for Sun.
 
Gravitational forces on the Sun are balanced by gas pressure. If pressure ''switches of'' at some moment, Sun would collapse. The time of gravitational collapse is called the dynamic time. Calculate this time for Sun.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 178: Line 178:
 
<div id="razm60n2"></div>
 
<div id="razm60n2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14 ===
+
=== Problem 14: another estimation for dynamic time ===
 
Show that for any star its dynamic time is approximately equal to the ratio of star's radius to the escape velocity on its surface.  For the Sun, compare this estimate with the exact value obtained in the previous problem.
 
Show that for any star its dynamic time is approximately equal to the ratio of star's radius to the escape velocity on its surface.  For the Sun, compare this estimate with the exact value obtained in the previous problem.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 191: Line 191:
 
<div id="razm62"></div>
 
<div id="razm62"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15 ===
+
=== Problem 15: negative thermal capacity ===
 
Show that stars (and star clusters) have an amazing property of negative thermal capacity: the more it looses energy due to radiation from its surface, the higher is the temperature in its center.
 
Show that stars (and star clusters) have an amazing property of negative thermal capacity: the more it looses energy due to radiation from its surface, the higher is the temperature in its center.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 204: Line 204:
 
<div id="razm62n"></div>
 
<div id="razm62n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 16 ===
+
=== Problem 16: gravitational and cosmological redshifts ===
Along with cosmological redshift the gravitational redshift exists (the effect of general relativity), which consists in change in clock under varying gravitational potential. How could these effects be distinguished qualitatively?
+
Along with cosmological redshift, there is the gravitational redshift (the effect of General Relativity), which consists in change in clock under varying gravitational potential. How could these effects be distinguished qualitatively?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 221: Line 221:
 
<div id="Okun3"></div>
 
<div id="Okun3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 17 ===
+
=== Problem 17: gravitational redshift ===
 
Demonstrate, that photon emitted at lower floor of a building due to the transition between two nuclear (atomic) levels could not induce the reverse transition in the same nucleus (atom) at higher floor.
 
Demonstrate, that photon emitted at lower floor of a building due to the transition between two nuclear (atomic) levels could not induce the reverse transition in the same nucleus (atom) at higher floor.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 234: Line 234:
 
<div id="Okun4"></div>
 
<div id="Okun4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 18: photons in gravitational field ===
 
Consider a photon in static gravitational field. Which characteristics of this photon (energy, frequency, momentum, wavelength) change and which remain the same?
 
Consider a photon in static gravitational field. Which characteristics of this photon (energy, frequency, momentum, wavelength) change and which remain the same?
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 247: Line 247:
 
<div id="Okun5"></div>
 
<div id="Okun5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 19 ===
+
=== Problem 19: light deflection ===
 
Describe the mechanism of light deflection in the gravitational field of the Sun and galaxies.
 
Describe the mechanism of light deflection in the gravitational field of the Sun and galaxies.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 260: Line 260:
 
<div id="Okun6"></div>
 
<div id="Okun6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 20 ===
+
=== Problem 20: local clocks ===
 
Trace the photon from [[#Okun3|problem ]] with clocks, located along the photon's trajectory (at each floor).
 
Trace the photon from [[#Okun3|problem ]] with clocks, located along the photon's trajectory (at each floor).
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>

Revision as of 14:39, 11 October 2012



Problem 1: Doppler effect with constant acceleration

Consider two observers at constant distance $L$ between them, moving far from any mass, i.e. in the absence of gravitational field with constant acceleration $a$. At $t_0$ the rear observer emits a photon with wavelength $\lambda$. Calculate the redshift that the leading observer will detect.


Problem 2: on the Equivalence Principle

Let's suppose that an elevator's rope breaks and elevator enters the state of free fall state. Is it possible to determine experimentally, been inside, that the elevator is falling near Earth's surface?


Problem 3: gravity and antimatter

Richard Feynman wrote: "The striking similarity of electrical and gravitational forces $\ldots$ has made some people conclude that it would be nice if antimatter repelled matter;". What arguments did Feynman use to demonstrate the inconsistency of this assumption (at least in our world)?


Problem 4: EM and gravity

What is the difference (quantitative and qualitative) between the gravitational waves and the electromagnetic ones?


Problem 5: gravity in atoms

Find the probability that transition between two atomic states occurs due to gravitation rather than electromagnetic forces.


Problem 6: gravity and quantization

In his Lectures on Gravitation Feynman asks: "$\ldots$maybe nature is trying to tell us something new here, maybe we should not try to quantize gravity. Is it possible perhaps that we should not insist on a uniformity of nature that would make everything quantized?". And answers this question. Try to reproduce his arguments.


Problem 7: gravity scale

Evidently the role of gravitation grows with the mass of a body. Show that gravitation dominates if the number of atoms in the body exceeds the critical value \(N_{cr}\simeq(\alpha/\alpha_G)^{3/2}\simeq10^{54},\) where $\alpha=e^2/(\hbar c)$ is the fine structure constant and $\alpha_G\equiv Gm_p^2/(\hbar c)$ is the fine structure constant for gravitation, $m_p$ is proton's mass.


Problem 8: Jeans instability

Stars form from gas and dust due to gravitational instability, which forces gas clouds to compress. This process is known as Jeans instability after the famous English cosmologist James Jeans (1877 -- 1946). What is the physical cause of the Jeans instability?


Problem 9: star clusters

Observations show that stars form not individually, but in large groups. Young stars are detected in clusters, which contain, usually, several hundreds of stars, which were formed at the same time. Theoretical calculations show, that formation of individual stars is almost impossible. How could this claim be justified?


Problem 10: the Jeans criterion

A gas cloud of mass $M$ consisting of molecules of mass $\mu$ is unstable if the gravitational energy exceeds the kinetic energy of thermal motion. Derive the stability condition for the spherically symmetric homogeneous cloud of radius $R$ (the Jeans criterion).


Problem 11: typical critical density

Estimate the critical density for a hydrogen cloud of solar mass at temperature $T=1\ 000\ K$.


Problem 12: gravitational pressure

Compare the gravitational pressure in the centers of the Sun ($\rho=1.4\ g/cm^3$) and the Earth ($\rho=5.5\ g/cm^3$).


Problem 13: the dynamic time

Gravitational forces on the Sun are balanced by gas pressure. If pressure switches of at some moment, Sun would collapse. The time of gravitational collapse is called the dynamic time. Calculate this time for Sun.


Problem 14: another estimation for dynamic time

Show that for any star its dynamic time is approximately equal to the ratio of star's radius to the escape velocity on its surface. For the Sun, compare this estimate with the exact value obtained in the previous problem.


Problem 15: negative thermal capacity

Show that stars (and star clusters) have an amazing property of negative thermal capacity: the more it looses energy due to radiation from its surface, the higher is the temperature in its center.


Problem 16: gravitational and cosmological redshifts

Along with cosmological redshift, there is the gravitational redshift (the effect of General Relativity), which consists in change in clock under varying gravitational potential. How could these effects be distinguished qualitatively?


The following four problems are based on the paper [Okun L B "The theory of relativity and the Pythagorean theorem" Phys. Usp. 51 622–631 (2008)]. Here we try to understand the effect of gravity on matter (particles and photons) in terms of Newtonian and relativistic physics, but without relying on the General Theory of Relativity (GTR). Thus the terminology differs from that of GTR, and one should not be surprised to see that i.e. $c$ is not constant. For readers familiar with GTR it would be instructive to reformulate the solutions in its terms and establish the relations between the notions used in both approaches.


Problem 17: gravitational redshift

Demonstrate, that photon emitted at lower floor of a building due to the transition between two nuclear (atomic) levels could not induce the reverse transition in the same nucleus (atom) at higher floor.


Problem 18: photons in gravitational field

Consider a photon in static gravitational field. Which characteristics of this photon (energy, frequency, momentum, wavelength) change and which remain the same?


Problem 19: light deflection

Describe the mechanism of light deflection in the gravitational field of the Sun and galaxies.


Problem 20: local clocks

Trace the photon from problem with clocks, located along the photon's trajectory (at each floor).