Difference between revisions of "Information, Entropy and Holographic Screen"

From Universe in Problems
Jump to: navigation, search
(Created page with " __NOTOC__ <div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> === Problem 1: === Show that information density on holographic screen is limited by the valu...")
 
Line 3: Line 3:
  
  
<div id=""></div>
+
<div id="HU01"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1: ===
 
=== Problem 1: ===
Line 16: Line 16:
  
  
<div id=""></div>
+
<div id="HU02"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1: ===
+
=== Problem 2: ===
 
+
Choosing the Hubble sphere as a holographic screen, find its area in the de Sitter model (recall that in this model the Universe dynamics is determined by the cosmological constant $\Lambda >0$).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">$$
 +
A=\frac{12\pi }{\Lambda }.
 +
$$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 29: Line 31:
  
  
<div id=""></div>
+
<div id="HU03"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1: ===
+
=== Problem 3: ===
 
+
Find the entropy of a quantum system composed of $N$ spin-$1/2$ particles.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Entropy of a quantum system equals to logarithm of the number of degrees of freedom $N,$ i.e. to logarithm of the dimension $\dim H$ of the Hilbert space
 +
$$
 +
S=\ln N=\ln (\dim H).
 +
$$
 +
For the system of $N$ spin-$1/2$ particles $\dim H = 2^N$ and
 +
$$
 +
S=N\ln 2.
 +
$$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 42: Line 51:
  
  
<div id=""></div>
+
<div id="HU04"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1: ===
+
=== Problem 4: ===
 
+
Consider a 3D lattice of spin-$1/2$ particles and prove that entropy of such a system defined in a standard way is proportional to its volume.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Let the lattice occupy volume ${{L}^{3}}$, and its spatial period equals to $l$. Entropy of the system is proportional to the number of (quantum) states $N={{2}^{n}},\ n={{\left( \frac{L}{l} \right)}^{3}}$. Therefore \[S\propto \ln N\propto {{\left( \frac{L}{l} \right)}^{3}}\propto V.\]
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 55: Line 65:
  
  
<div id=""></div>
+
<div id="HU05"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1: ===
+
=== Problem 5: ===
 
+
Find the change of the holographic screen area when it is crossed by a spin-$1/2$ particle.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Let all the ''punctures'' of the holographic screen be due its crossing by spin-$1/2$ particles. Then for $N$ punctures
 +
$$
 +
N=\frac{A{{c}^{3}}}{4G\hbar \ln 2}.
 +
$$
 +
The crossing leads to an additional puncture and therefore to change of the surface area equal to
 +
$$
 +
\Delta A=\frac{\hbar G}{{{c}^{3}}}4\ln 2.
 +
$$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 68: Line 85:
  
  
<div id=""></div>
+
<div id="HU06"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1: ===
+
=== Problem 6: ===
 
+
What entropy change corresponds to the process described in the previous problem?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">$\Delta S=\ln 2$ (see  [[#HU03 problem]]).</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 19:57, 28 March 2013



Problem 1:

Show that information density on holographic screen is limited by the value $\sim 10^{69} \: \mbox{bit/m}^2.$


Problem 2:

Choosing the Hubble sphere as a holographic screen, find its area in the de Sitter model (recall that in this model the Universe dynamics is determined by the cosmological constant $\Lambda >0$).


Problem 3:

Find the entropy of a quantum system composed of $N$ spin-$1/2$ particles.


Problem 4:

Consider a 3D lattice of spin-$1/2$ particles and prove that entropy of such a system defined in a standard way is proportional to its volume.


Problem 5:

Find the change of the holographic screen area when it is crossed by a spin-$1/2$ particle.


Problem 6:

What entropy change corresponds to the process described in the previous problem?


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1:


Problem 1: