Difference between revisions of "Lost and Found"

From Universe in Problems
Jump to: navigation, search
Line 23: Line 23:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Consider the case of the Universe composed of non-relativistic matter and quintessence and relate the quantities $\varphi ,\,\rho _\varphi  ,\,H,\,V(\varphi )$ with the redshift-dependent state equation parameter $w(z)$.
 
Consider the case of the Universe composed of non-relativistic matter and quintessence and relate the quantities $\varphi ,\,\rho _\varphi  ,\,H,\,V(\varphi )$ with the redshift-dependent state equation parameter $w(z)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 66: Line 66:
 
$$
 
$$
 
$$
 
$$
\varphi (z) - \varphi _0  = \int_0^z {{{\sqrt {\left[ {1 + w(z')} \right]\rho _\varphi  (z')} } \over {H(z')}}} {{dz'} \over {1 + z'}}
+
\varphi (z) - \varphi _0  = \int_0^z {{{\sqrt {\left[ {1 + w(z')} \right]\rho _\varphi  (z')} } \over {H(z')}}} {{dz'} \over {1 + z'}}.$$</p>
.$$</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 75: Line 75:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
When solving the equation for the scalar field one assumes that the time dependence of the scalar factor, which is necessary to calculate the Hubble parameter in the equation, is determined by the dominant component. Such approximation becomes invalid at some time moment, because the energy density for the scalar field decays slower than that of matter or radiation. Determine the value of the scalar field at that time moment for the potential of the  [[Dynamical_Forms_of_Dark_Energy#DE73|problem]]
 
When solving the equation for the scalar field one assumes that the time dependence of the scalar factor, which is necessary to calculate the Hubble parameter in the equation, is determined by the dominant component. Such approximation becomes invalid at some time moment, because the energy density for the scalar field decays slower than that of matter or radiation. Determine the value of the scalar field at that time moment for the potential of the  [[Dynamical_Forms_of_Dark_Energy#DE73|problem]]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 81: Line 81:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">Substitute the corresponding time dependencies into the condition of energy density equation between matter $\rho _0 $  and the scalar field:
 
     <p style="text-align: left;">Substitute the corresponding time dependencies into the condition of energy density equation between matter $\rho _0 $  and the scalar field:
  $$\rho _0 t_e^{ - 2}  = \frac{1}{2}\frac{4}{{(n + 2)^2 }}C^2 t_e^{ - \frac{{2n}}{{n + 2}}}  + \frac{{AC^{ - n} }}{n}t_e^{ - \frac{{2n}}{{n + 2}}} $$
+
  $$\rho _0 t_e^{ - 2}  = \frac{1}{2}\frac{4}{(n + 2)^2 }C^2 t_e^{ - \frac{2n}{n + 2}}  + \frac{AC^{ - n}}{n}t_e^{ - \frac{2n}{n + 2}} $$
 
Then one easily obtains
 
Then one easily obtains
 
  $$t_e  = \left[ {\frac{n(n + 2)(1 + w)\rho _0 }{4C^2 }} \right]^{\frac{n + 2}{4}} $$
 
  $$t_e  = \left[ {\frac{n(n + 2)(1 + w)\rho _0 }{4C^2 }} \right]^{\frac{n + 2}{4}} $$
Line 92: Line 92:
 
$$\dot a = \frac{{\rho _0 }}{{\sqrt 3 M_P }}a^{ - \frac{1}{2}(1 + 3w)}.$$
 
$$\dot a = \frac{{\rho _0 }}{{\sqrt 3 M_P }}a^{ - \frac{1}{2}(1 + 3w)}.$$
 
After trivial integration with the initial conditions $t_0  = 0,a = 0$ yields
 
After trivial integration with the initial conditions $t_0  = 0,a = 0$ yields
$$a = \left[ {\sqrt {\frac{{\rho _0 }}{3}} \frac{1}{{M_p }}\frac{{3(1 + w)}}{2}t} \right]^{\frac{2}{{3(1 + w)}}},$$
+
$$a = \left[ {\sqrt {\frac{\rho _0 }{3}} \frac{1}{M_p}\frac{3(1 + w)}{2}t} \right]^{\frac{2}{3(1 + w)}},$$
 
and one finally finds
 
and one finally finds
 
$$\rho  = \frac{4M_p^2 }{3(1 + w)}t^{ - 2} $$
 
$$\rho  = \frac{4M_p^2 }{3(1 + w)}t^{ - 2} $$

Revision as of 23:59, 2 December 2012





Problem 1

Consider the case of spatially flat Universe dominated by non-relativistic matter and spatially homogeneous scalar complex field $\Phi$ and obtain the equations to describe the dynamics of such a Universe.


Problem 2

Consider the case of the Universe composed of non-relativistic matter and quintessence and relate the quantities $\varphi ,\,\rho _\varphi ,\,H,\,V(\varphi )$ with the redshift-dependent state equation parameter $w(z)$.



Problem 3

When solving the equation for the scalar field one assumes that the time dependence of the scalar factor, which is necessary to calculate the Hubble parameter in the equation, is determined by the dominant component. Such approximation becomes invalid at some time moment, because the energy density for the scalar field decays slower than that of matter or radiation. Determine the value of the scalar field at that time moment for the potential of the problem