Difference between revisions of "Non relativistic small perturbation theory"

From Universe in Problems
Jump to: navigation, search
(Problem 2)
(Problem 9)
 
(6 intermediate revisions by the same user not shown)
Line 51: Line 51:
 
   \frac{\partial \vec v}
 
   \frac{\partial \vec v}
 
{\partial t} + \left(\vec v\nabla \right)\vec v + \frac{1}
 
{\partial t} + \left(\vec v\nabla \right)\vec v + \frac{1}
{\rho }\nabla P + \nabla \Phi  = 0, \hfill \\
+
{\rho }\nabla P + \nabla \Phi  = 0, \\
 
   \Delta \Phi  = \nabla  \cdot \left(\nabla \Phi\right) = 4\pi G\rho , \\
 
   \Delta \Phi  = \nabla  \cdot \left(\nabla \Phi\right) = 4\pi G\rho , \\
 
   \frac{\partial S}
 
   \frac{\partial S}
Line 78: Line 78:
 
where $c_S^2$ is adiabatic speed of sound.
 
where $c_S^2$ is adiabatic speed of sound.
  
Substituting these expressions into hydrodynamic equations, we obtain the foolowing system:
+
Substituting these expressions into hydrodynamic equations, we obtain the following system:
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
 
   \frac{d\delta}
 
   \frac{d\delta}
{dt} + i\vec k\vec w = 0; \hfill \\
+
{dt} + i\vec k\vec w = 0; \\
 
  \frac{d\vec w}
 
  \frac{d\vec w}
 
{dt} + i\vec kf + i\vec kc_S^2\delta+i\vec kh^2\rho _0^{-1}\sigma  =0; \\
 
{dt} + i\vec kf + i\vec kc_S^2\delta+i\vec kh^2\rho _0^{-1}\sigma  =0; \\
 
{k^2}f =  - 4\pi {\rho _0}\delta ; \\
 
{k^2}f =  - 4\pi {\rho _0}\delta ; \\
 
\frac{d\sigma }
 
\frac{d\sigma }
{dt} = 0. \hfill \\
+
{dt} = 0. \\
 
\end{gathered}
 
\end{gathered}
 
$$</p>
 
$$</p>
Line 110: Line 110:
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
   \delta  = \delta _0e^{\omega t}, \hfill \\
+
   \delta  = \delta _0e^{\omega t}, \\
  \vec w =\vec w_0e^{\omega t}, \hfill \\
+
  \vec w =\vec w_0e^{\omega t}, \\
  f = f_0e^{\omega t},\hfill \\
+
  f = f_0e^{\omega t},\\
  \sigma  = \sigma _0e^{\omega t}. \hfill \\
+
  \sigma  = \sigma _0e^{\omega t}. \\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
The equations for perturbations in this case (see. problem \ref{per2}) have the form:
+
The equations for perturbations in this case (see. problem [[#per2]]) have the form:
 
$$
 
$$
 
\omega \delta _0 =  - ikw_0;
 
\omega \delta _0 =  - ikw_0;
Line 132: Line 132:
 
<div id="per4"></div>
 
<div id="per4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 4 ===
 
=== Problem 4 ===
 
<p style= "color: #999;font-size: 11px">problem id: per4</p>
 
<p style= "color: #999;font-size: 11px">problem id: per4</p>
Consider time dependent adiabatic perturbations and find the characterictic scale of instability (so-called Jeans instability).
+
Consider time dependent adiabatic perturbations and find the characteristic scale of instability (so-called Jeans instability).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 141: Line 142:
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
   \omega \delta _0 =  - ikw_0, \hfill \\
+
   \omega \delta _0 =  - ikw_0, \\
   \omega \vec w_0 =  - i\vec kf_0 - i\vec kc_S^2\delta _0, \hfill \\
+
   \omega \vec w_0 =  - i\vec kf_0 - i\vec kc_S^2\delta _0, \\
   - k^2f_0 = 4\pi G\rho _0\delta _0,\hfill \\
+
   - k^2f_0 = 4\pi G\rho _0\delta _0,\\
   \omega \sigma _0 = 0. \hfill \\
+
   \omega \sigma _0 = 0. \\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
Line 154: Line 155:
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
   4\pi G\rho _0 - c_S^2k_J^2 = 0, \hfill \\
+
   4\pi G\rho _0 - c_S^2k_J^2 = 0, \\
 
  k_J = \frac{1}
 
  k_J = \frac{1}
{c_S}\sqrt {4\pi G\rho _0},\hfill \\
+
{c_S}\sqrt {4\pi G\rho _0},\\
 
   \lambda _J = \frac{2\pi}
 
   \lambda _J = \frac{2\pi}
 
{k_J} = c_S\sqrt {\frac{\pi }
 
{k_J} = c_S\sqrt {\frac{\pi }
{G\rho _0}} . \hfill \\
+
{G\rho _0}} . \\
 
\end{gathered}
 
\end{gathered}
 
$$</p>
 
$$</p>
Line 168: Line 169:
 
<div id="per5"></div>
 
<div id="per5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 5 ===
 
=== Problem 5 ===
 
<p style= "color: #999;font-size: 11px">problem id: per5</p>
 
<p style= "color: #999;font-size: 11px">problem id: per5</p>
Line 179: Line 181:
 
     <p style="text-align: left;">a) $$
 
     <p style="text-align: left;">a) $$
 
\begin{gathered}
 
\begin{gathered}
4\pi G{\rho _0} - c_S^2{k_J}^2 > 0,\hfill \\
+
4\pi G{\rho _0} - c_S^2{k_J}^2 > 0,\\
\omega _1 =  - \omega _2 = \omega \operatorname{Im}\delta _0 = 0,\hfill \\
+
\omega _1 =  - \omega _2 = \omega \operatorname{Im}\delta _0 = 0,\\
 
  \rho = \rho _0\operatorname{Re}(1 + \delta_0e^{\omega _{1,2}t+i\vec k\vec x})
 
  \rho = \rho _0\operatorname{Re}(1 + \delta_0e^{\omega _{1,2}t+i\vec k\vec x})
= \rho _0(1 + \delta _0e^{\omega _{1,2}t}\cos \vec k\vec x), \hfill \\
+
= \rho _0(1 + \delta _0e^{\omega _{1,2}t}\cos \vec k\vec x), \\
 
\vec v = \operatorname{Re}(i\frac{\vec k}
 
\vec v = \operatorname{Re}(i\frac{\vec k}
 
{k}e^{i\vec k\vec x}\frac{\omega }
 
{k}e^{i\vec k\vec x}\frac{\omega }
 
{k}\delta _0e^{\omega _{1,2}t}) =  - \frac{\vec k\omega}
 
{k}\delta _0e^{\omega _{1,2}t}) =  - \frac{\vec k\omega}
{k}e^{\omega _{1,2}t}\sin \vec k\vec x .\hfill \\
+
{k}e^{\omega _{1,2}t}\sin \vec k\vec x .\\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
Line 192: Line 194:
 
b)\[
 
b)\[
 
\begin{gathered}
 
\begin{gathered}
   \omega  =  \pm i\sqrt {c_S^2k^2 - 4\pi G\rho _0},  \hfill \\
+
   \omega  =  \pm i\sqrt {c_S^2k^2 - 4\pi G\rho _0},  \\
   \rho  = \rho _0\left[ 1 - \delta _0\cos \left( \vec k\vec x - \left| \omega  \right|t \right) \right],\hfill\\
+
   \rho  = \rho _0\left[ 1 - \delta _0\cos \left( \vec k\vec x - \left| \omega  \right|t \right) \right],\\
 
\vec v = \frac{\vec k\omega }
 
\vec v = \frac{\vec k\omega }
{k}\cos \left( \vec k\vec x - \left| \omega  \right|t \right),\hfill \\
+
{k}\cos \left( \vec k\vec x - \left| \omega  \right|t \right),\\
   \left| \omega  \right| = \sqrt {c_S^2k^2 - 4\pi G\rho _0}.  \hfill \\
+
   \left| \omega  \right| = \sqrt {c_S^2k^2 - 4\pi G\rho _0}.  \\
 
\end{gathered}
 
\end{gathered}
 
\]
 
\]
Line 210: Line 212:
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
\rho =\rho _0\left[1 -\delta _0\cos \left(\vec k\vec x \right)\right], \hfill \\
+
\rho =\rho _0\left[1 -\delta _0\cos \left(\vec k\vec x \right)\right], \\
 
\vec v = \frac{\vec k\omega }
 
\vec v = \frac{\vec k\omega }
{k}\cos \left( \vec k\vec x\right). \hfill \\
+
{k}\cos \left( \vec k\vec x\right). \\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
Line 222: Line 224:
 
<div id="per6"></div>
 
<div id="per6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 6 ===
 
=== Problem 6 ===
 
<p style= "color: #999;font-size: 11px">problem id: per6</p>
 
<p style= "color: #999;font-size: 11px">problem id: per6</p>
Line 231: Line 234:
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
   \tilde{\rho}  = \rho  + \delta \rho \left(\vec x,t \right);\hfill \\
+
   \tilde{\rho}  = \rho  + \delta \rho \left(\vec x,t \right);\\
\vec{\tilde {V}} = \vec V + \delta \vec v;\hfill \\
+
\vec{\tilde {V}} = \vec V + \delta \vec v;\\
\tilde \Phi  = \Phi  + \delta \Phi; \hfill \\
+
\tilde \Phi  = \Phi  + \delta \Phi; \\
   \tilde p = p + \delta p. \hfill \\
+
   \tilde p = p + \delta p. \\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
Line 241: Line 244:
 
\begin{gathered}
 
\begin{gathered}
 
   \frac{\partial \delta \rho}
 
   \frac{\partial \delta \rho}
{\partial t} + \rho \nabla \delta \vec v + \nabla \left( \delta \rho  \cdot \vec V \right) = 0; \hfill \\
+
{\partial t} + \rho \nabla \delta \vec v + \nabla \left( \delta \rho  \cdot \vec V \right) = 0; \\
 
   \frac{\partial \delta \vec v}
 
   \frac{\partial \delta \vec v}
 
{\partial t} + \left( \vec V \cdot \nabla \right)\delta \vec v + \left( \delta \vec v \cdot \nabla \right)\vec V + \frac{c_s^2}
 
{\partial t} + \left( \vec V \cdot \nabla \right)\delta \vec v + \left( \delta \vec v \cdot \nabla \right)\vec V + \frac{c_s^2}
\rho\nabla \delta \rho  + \nabla \delta \Phi  = 0;\hfill \\
+
\rho\nabla \delta \rho  + \nabla \delta \Phi  = 0;\\
   \Delta \delta \Phi  = 4\pi G\delta \rho . \hfill \\
+
   \Delta \delta \Phi  = 4\pi G\delta \rho . \\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
Line 260: Line 263:
 
Denoting $\delta  = \delta \rho /\rho$, one could rewrite equations in the form
 
Denoting $\delta  = \delta \rho /\rho$, one could rewrite equations in the form
 
$$\begin{gathered}
 
$$\begin{gathered}
  \frac{\partial \delta }{\partial t}  + \frac{1}{a}\nabla \delta \vec v = 0;\hfill\\
+
  \frac{\partial \delta }{\partial t}  + \frac{1}{a}\nabla \delta \vec v = 0;\\
   \frac{\partial \delta }{\partial t} + H\delta \vec v + \frac{c_s^2}{a}\nabla \delta  + \frac{1}{a}\nabla \Phi  = 0;\hfill \\
+
   \frac{\partial \delta }{\partial t} + H\delta \vec v + \frac{c_s^2}{a}\nabla \delta  + \frac{1}{a}\nabla \Phi  = 0;\\
\Delta \delta \Phi  = 4\pi G\rho \delta , \hfill \\
+
\Delta \delta \Phi  = 4\pi G\rho \delta , \\
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
Line 278: Line 281:
 
<div id="per7"></div>
 
<div id="per7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 7 ===
 
=== Problem 7 ===
 
<p style= "color: #999;font-size: 11px">problem id: per7</p>
 
<p style= "color: #999;font-size: 11px">problem id: per7</p>
Line 370: Line 374:
 
=== Problem 9 ===
 
=== Problem 9 ===
 
<p style= "color: #999;font-size: 11px">problem id: per8</p>
 
<p style= "color: #999;font-size: 11px">problem id: per8</p>
Assuming, that a particular solution to equation from prob. \ref{per6} has the form $\delta _1\left( t \right) \sim H\left( t \right)$, construct the general solution for $\delta (t)$. Consider the flat Universe filled with the substance with $p = w\rho.$
+
Assuming, that a particular solution to equation from prob. [[#per6]] has the form $\delta _1\left( t \right) \sim H\left( t \right)$, construct the general solution for $\delta (t)$. Consider the flat Universe filled with the substance with $p = w\rho.$
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 409: Line 413:
 
<div id="per9"></div>
 
<div id="per9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 10 ===
 
=== Problem 10 ===
 
<p style= "color: #999;font-size: 11px">problem id: per9</p>
 
<p style= "color: #999;font-size: 11px">problem id: per9</p>

Latest revision as of 05:39, 11 February 2014


Perturbation theory in expanding Universe has a number of distinctive festures. Strictly speaking, this theory shloud be based within the framework of general relativity. However, if inhomogeneities are small one could neglect the effects of curvature and finite speed of interaction and use newtonian dynamics.

To describe the fluctuations of density in this approximation we need the continuity equation $$ \frac{\partial \rho} {\partial t} + \nabla \cdot \left(\rho \vec v\right) = 0 $$ and Euler equation $$ \frac{\partial \vec v} {\partial t} + \left( \vec v\nabla \right)\vec v + \frac{1} {\rho }\nabla P + \nabla \Phi = 0, $$ where Newtonian gravitational potential satisfies the Laplace equation $$ \Delta \Phi = 4\pi G\rho. $$


Problem 1

problem id: per1

Express the deviation of expansion rate from Hubble law in terms of physical and comoving coordinates.


Problem 2

problem id: per2

Obtain the equations for perturbations in linear approximation, assuming that unperturbed state is stationary gas. uniformly distributed in space.


Problem 3

problem id: per3

Demonstrate, that perturbations depend exponentially on time if unperturbed solution is stationary.


Problem 4

problem id: per4

Consider time dependent adiabatic perturbations and find the characteristic scale of instability (so-called Jeans instability).


Problem 5

problem id: per5

Using the results of previous problem, consider the cases of

  • long--wave $\lambda > \lambda _J$ and
  • short--wave $\lambda < \lambda _J$

perturbations. Cosider also the limiting case of short waves ($\lambda \ll \lambda _J$).


Problem 6

problem id: per6

Construct the equation for small relative fluctuations of density \[\delta = \frac{\delta \rho }{\rho }\] in Newtonian approximation neglecting the entropy perturbations.


Problem 7

problem id: per7

Rewrite equation from previous problem in terms of Fourier components, eliminating the Lagrangian coordinates. Estimate the order of "physical" Jeans wavelength for matter dominated Universe.


Problem 8

problem id: per8n

Obtain the dependence of fluctuations on time in flat Universe when
a) matter,
b) radition
is dominating.


Problem 9

problem id: per8

Assuming, that a particular solution to equation from prob. #per6 has the form $\delta _1\left( t \right) \sim H\left( t \right)$, construct the general solution for $\delta (t)$. Consider the flat Universe filled with the substance with $p = w\rho.$


Problem 10

problem id: per9

Demonstrate, that transverse or rotational mode in expanding Universe tends to decrease.