Difference between revisions of "Planck scales and fundamental constants"

From Universe in Problems
Jump to: navigation, search
 
(18 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Cosmo warm-up|4]]
+
[[Category:Cosmo warm-up|5]]
 +
 
 +
__TOC__
 +
 
 +
<div id="Okun1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1: frequency or energy? ===
 +
Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Let's analyze the methods for measuring of considered quantities to answer this quenstion. $E$ and $E/c^2$ are measured by the same procedure, for example, using a calorimeter, but frequency is measured in a fundamentally different way, for example, using a clock. Consequently, the expression $\omega = E/\hbar$ contains the  relation between two different types of measurements, while expression $e = E/c^2$  does not. This metrological difference has mainly historical origin. Recall, that modern chronometers are based on the measurement of difference between energies of atomic levels.
 +
</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="Okun2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2: energy, momentum and mass ===
 +
In special relativity mass is determined by the relation
 +
\[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\]
 +
This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">This is impossible, since momentum $\vec p$ is a vector, while $e$ and $m$ are scalars in 3--dimensional space.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3: the Planck units ===
 +
Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).
 +
<!--<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>--></div>
 +
 
 +
 
 +
 
 +
<div id="razm15n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4: Newton units ===
 +
Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$l_{_{Pl}}  = \sqrt {{G\hbar} \over {c^3}}=1.6 \times 10^{-35}\mbox{m} $, $t_{_{Pl}}  = \sqrt{{G\hbar } \over {c^5 }}=5.38 \times 10^{-44}s$, $M_{_{Pl}}  = \sqrt {{\hbar c} \over G}=2.18 \times 10^{-8} \mbox{kg}$, $T_{_{Pl}}  = \sqrt {{\hbar c^5} \over {Gk_B^2}} = 1.4\cdot 10^{32}K$, $\rho _{_{Pl}}  = {{c^5 } \over {G^2 \hbar }}=5.17 \times 10^{96} \mbox{kg/m}^3$</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm16"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5: Planck time ===
 +
$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$10^{35}$</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm17"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6: gravitational radius for Planck mass  ===
 +
Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton  wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$r_g={2GM_{_{Pl}} \over {c^2}} = {\hbar  \over M_{_{Pl}}c} = l_{_{Pl}}$</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<!--<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7: quantum gravity effects  ===
 +
Show that for any Standard Model particle quantum gravity effects are completely negligible at the particle level.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Quantum gravity effects can be neglected in the case when the Compton wavelength $\lambda _c  = \frac{\hbar }{mc}$ of the particle is much greater than the Schwarzschild radius $r_s  = \frac{2mG}{c^2}$. The parameter that defines the role of quantum gravity,
 +
\[\frac{\lambda _c }{r_s } \approx \frac{m_{Pl}^2}{m^2}\]
 +
For example, for an electron
 +
\[\frac{\lambda _c }{r_s} \approx 10^{45}\]
 +
so quantum gravity effects are completely negligible. The same is true for all other Standard Model particles.</p>
 +
  </div>
 +
</div></div> -->
 +
 
 +
 
 +
<div id="razm18"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7: 1GeV ===
 +
Demonstrate, that in  the units $c=\hbar=1$
 +
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
 +
1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c
 +
\approx 2\cdot 10^{-14}\,cm.\]
 +
<!--<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>--></div>
 +
 
 +
 
 +
 
 +
<div id="razm18new"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8: age of the Universe in Planck units ===
 +
In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.
 +
<!-- <div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>-->
 +
</div>
 +
 
 +
 
 +
 
 +
<div id="razm19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
 +
=== Problem 9: Planck mass in different units ===
 +
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$M_{Pl}  =  1.42 \cdot 10^{32} \,K = 6.2 \cdot 10^{32}\mbox{cm}^{ - 1} =  1.8 \cdot 10^{43} s^{ - 1} $.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm19n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
 +
=== Problem 10: gravitational constant ===
 +
Express Newton's constant $G$ in units $c=1$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$G = 7.4243\times 10^{-29}~\mbox{cm/g}$.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm20"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11: fine structure constant ===
 +
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Since the Coulomb force in $D$--dimensional space is $F_e \propto e^2 r^{-(D - 1)}$, the dimensionality of charge depends on the dimension of space, therefore $[\alpha ] = \left[ {{{e^2 } / {\hbar c}}} \right] = L^{D - 3}$.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm21"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12: dimensionless combinations ===
 +
Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Recall, that dimensionalities of ($e, G$) depend on the dimension of space. The required dimensionless combination is
 +
$$\alpha^{(D)} = e^{D - 1} \hbar ^{2 - D} c^{D - 4} G^{{{3 - D} \over 2}}. $$
 +
Gravitational constant $G$ doesn't enter this relation only for $D=3$ so that $\alpha^{(3)}  = {{e^2 } \over {\hbar c}}$.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm35"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 13: strong, weak, EM and gravity ===
 +
$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">no solution yet</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="razm36"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14: the Great Unification ===
 +
$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$T^{GU} \approx 10^{28}~K$.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="TF_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 15 ===
 +
<p style= "color: #999;font-size: 11px">problem id: TF_1</p>
 +
Construct planck units in a space of arbitrary dimension.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Dimensionality of the fundamental constants $c,\hbar,G_D$ in $D=4+n$ dimensions can be determined as
 +
\[[G_d]=L^{D-1}T^{-2}M^{-1},\quad \hbar=L^2T^{-1}M,\quad c=LT^{-1}.\]
 +
Note that the dimension of the space affects only the dimensionality of the Newton's constant $G_D$, because the universal gravitation law transforms with changes of dimensionality of the space as the following
 +
\[F=G_D\frac{M_1M_2}{R^{D-2}}.\]
 +
Use the combination
 +
\[[G_D^\alpha\hbar^\beta c^\gamma]= L^{\alpha(D-1)+2\beta+\gamma} T^{-2\alpha-\beta-\gamma} M^{-\alpha+\beta-\gamma}\]
 +
to find that
 +
\[L_{P(D)}=\left(\frac{G_D\hbar}{c^3}\right)^{\frac{1}{D-2}}\quad T_{P(D)}=\left(\frac{G_D\hbar}{c^{D+1}}\right)^{\frac{1}{D-2}}\quad M_{P(D)}=\left(\frac{c^{5-D}\hbar^{D-3}}{G_D}\right)^{\frac{1}{D-2}}.\]</p>
 +
  </div>
 +
</div></div>

Latest revision as of 11:37, 20 December 2013


Problem 1: frequency or energy?

Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?


Problem 2: energy, momentum and mass

In special relativity mass is determined by the relation \[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\] This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?


Problem 3: the Planck units

Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).


Problem 4: Newton units

Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?


Problem 5: Planck time

$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?


Problem 6: gravitational radius for Planck mass

Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.



Problem 7: 1GeV

Demonstrate, that in the units $c=\hbar=1$ \[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad 1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c \approx 2\cdot 10^{-14}\,cm.\]


Problem 8: age of the Universe in Planck units

In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.


Problem 9: Planck mass in different units

Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.


Problem 10: gravitational constant

Express Newton's constant $G$ in units $c=1$.


Problem 11: fine structure constant

Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.


Problem 12: dimensionless combinations

Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.


Problem 13: strong, weak, EM and gravity

$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.


Problem 14: the Great Unification

$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.


Problem 15

problem id: TF_1

Construct planck units in a space of arbitrary dimension.