Difference between revisions of "Planck scales and fundamental constants"

From Universe in Problems
Jump to: navigation, search
 
(10 intermediate revisions by 2 users not shown)
Line 36: Line 36:
 
=== Problem 3: the Planck units ===
 
=== Problem 3: the Planck units ===
 
Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).
 
Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 60: Line 60:
 
<div id="razm16"></div>
 
<div id="razm16"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
 
=== Problem 5: Planck time ===
 
=== Problem 5: Planck time ===
 
$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?
 
$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?
Line 79: Line 78:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">$r_g={{2GM_{_{Pl}}} \over {c^2}} = {\hbar  \over M_{_{Pl}}c} = l_{_{Pl}}$</p>
+
     <p style="text-align: left;">$r_g={2GM_{_{Pl}} \over {c^2}} = {\hbar  \over M_{_{Pl}}c} = l_{_{Pl}}$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
 +
 +
<!--<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7: quantum gravity effects  ===
 +
Show that for any Standard Model particle quantum gravity effects are completely negligible at the particle level.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Quantum gravity effects can be neglected in the case when the Compton wavelength $\lambda _c  = \frac{\hbar }{mc}$ of the particle is much greater than the Schwarzschild radius $r_s  = \frac{2mG}{c^2}$. The parameter that defines the role of quantum gravity,
 +
\[\frac{\lambda _c }{r_s } \approx \frac{m_{Pl}^2}{m^2}\]
 +
For example, for an electron
 +
\[\frac{\lambda _c }{r_s} \approx 10^{45}\]
 +
so quantum gravity effects are completely negligible. The same is true for all other Standard Model particles.</p>
 +
  </div>
 +
</div></div> -->
  
  
Line 97: Line 111:
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>-->
+
</div>--></div>
</div>
+
  
  
Line 118: Line 131:
 
<div id="razm19"></div>
 
<div id="razm19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 9: Planck mass in different units ===
 
=== Problem 9: Planck mass in different units ===
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
Line 123: Line 137:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">$M_{Pl}  =  1.42 \cdot 10^{32} \,K = 6.2 \cdot 10^{32}\mbox{\it cm}^{ - 1} =  1.8 \cdot 10^{43} s^{ - 1} $.</p>
+
     <p style="text-align: left;">$M_{Pl}  =  1.42 \cdot 10^{32} \,K = 6.2 \cdot 10^{32}\mbox{cm}^{ - 1} =  1.8 \cdot 10^{43} s^{ - 1} $.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 131: Line 145:
 
<div id="razm19n"></div>
 
<div id="razm19n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 10: gravitational constant ===
 
=== Problem 10: gravitational constant ===
 
Express Newton's constant $G$ in units $c=1$.
 
Express Newton's constant $G$ in units $c=1$.
Line 191: Line 206:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">$T^{GU} \approx 10^{28}~K$.</p>
 
     <p style="text-align: left;">$T^{GU} \approx 10^{28}~K$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="TF_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 15 ===
 +
<p style= "color: #999;font-size: 11px">problem id: TF_1</p>
 +
Construct planck units in a space of arbitrary dimension.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Dimensionality of the fundamental constants $c,\hbar,G_D$ in $D=4+n$ dimensions can be determined as
 +
\[[G_d]=L^{D-1}T^{-2}M^{-1},\quad \hbar=L^2T^{-1}M,\quad c=LT^{-1}.\]
 +
Note that the dimension of the space affects only the dimensionality of the Newton's constant $G_D$, because the universal gravitation law transforms with changes of dimensionality of the space as the following
 +
\[F=G_D\frac{M_1M_2}{R^{D-2}}.\]
 +
Use the combination
 +
\[[G_D^\alpha\hbar^\beta c^\gamma]= L^{\alpha(D-1)+2\beta+\gamma} T^{-2\alpha-\beta-\gamma} M^{-\alpha+\beta-\gamma}\]
 +
to find that
 +
\[L_{P(D)}=\left(\frac{G_D\hbar}{c^3}\right)^{\frac{1}{D-2}}\quad T_{P(D)}=\left(\frac{G_D\hbar}{c^{D+1}}\right)^{\frac{1}{D-2}}\quad M_{P(D)}=\left(\frac{c^{5-D}\hbar^{D-3}}{G_D}\right)^{\frac{1}{D-2}}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 11:37, 20 December 2013


Problem 1: frequency or energy?

Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?


Problem 2: energy, momentum and mass

In special relativity mass is determined by the relation \[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\] This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?


Problem 3: the Planck units

Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).


Problem 4: Newton units

Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?


Problem 5: Planck time

$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?


Problem 6: gravitational radius for Planck mass

Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.



Problem 7: 1GeV

Demonstrate, that in the units $c=\hbar=1$ \[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad 1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c \approx 2\cdot 10^{-14}\,cm.\]


Problem 8: age of the Universe in Planck units

In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.


Problem 9: Planck mass in different units

Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.


Problem 10: gravitational constant

Express Newton's constant $G$ in units $c=1$.


Problem 11: fine structure constant

Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.


Problem 12: dimensionless combinations

Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.


Problem 13: strong, weak, EM and gravity

$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.


Problem 14: the Great Unification

$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.


Problem 15

problem id: TF_1

Construct planck units in a space of arbitrary dimension.