Difference between revisions of "Planck scales and fundamental constants"

From Universe in Problems
Jump to: navigation, search
(Problem 7: gravitational radius for Planck mass)
Line 85: Line 85:
  
  
<div id=""></div>
+
<!--<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 7: quantum gravity effects  ===
 
=== Problem 7: quantum gravity effects  ===
Line 96: Line 96:
 
so quantum gravity effects are completely negligible. The same is true for all other Standard Model particles.</p>
 
so quantum gravity effects are completely negligible. The same is true for all other Standard Model particles.</p>
 
   </div>
 
   </div>
</div></div>
+
</div></div> -->
  
  
Line 103: Line 103:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 8: 1GeV ===
+
=== Problem 7: 1GeV ===
 
Demonstrate, that in  the units $c=\hbar=1$
 
Demonstrate, that in  the units $c=\hbar=1$
 
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
 
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
Line 120: Line 120:
 
<div id="razm18new"></div>
 
<div id="razm18new"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9: age of the Universe in Planck units ===
+
=== Problem 8: age of the Universe in Planck units ===
 
In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.
 
In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.
 
<!-- <div class="NavFrame collapsed">
 
<!-- <div class="NavFrame collapsed">
Line 134: Line 134:
 
<div id="razm19"></div>
 
<div id="razm19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10: Planck mass in different units ===
+
=== Problem 9: Planck mass in different units ===
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 147: Line 147:
 
<div id="razm19n"></div>
 
<div id="razm19n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11: gravitational constant ===
+
=== Problem 10: gravitational constant ===
 
Express Newton's constant $G$ in units $c=1$.
 
Express Newton's constant $G$ in units $c=1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 160: Line 160:
 
<div id="razm20"></div>
 
<div id="razm20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12: fine structure constant ===
+
=== Problem 11: fine structure constant ===
 
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 173: Line 173:
 
<div id="razm21"></div>
 
<div id="razm21"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13: dimensionless combinations ===
+
=== Problem 12: dimensionless combinations ===
 
Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.
 
Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 188: Line 188:
 
<div id="razm35"></div>
 
<div id="razm35"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14: strong, weak, EM and gravity ===
+
=== Problem 13: strong, weak, EM and gravity ===
 
$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 
$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 201: Line 201:
 
<div id="razm36"></div>
 
<div id="razm36"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15: the Great Unification ===
+
=== Problem 14: the Great Unification ===
 
$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.
 
$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 19:37, 5 November 2012


Problem 1: frequency or energy?

Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?


Problem 2: energy, momentum and mass

In special relativity mass is determined by the relation \[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\] This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?


Problem 3: the Planck units

Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).


Problem 4: Newton units

Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?


Problem 5: Planck time

$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?


Problem 6: gravitational radius for Planck mass

Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.




Problem 7: 1GeV

Demonstrate, that in the units $c=\hbar=1$ \[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad 1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c \approx 2\cdot 10^{-14}\,cm.\]


Problem 8: age of the Universe in Planck units

In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.


Problem 9: Planck mass in different units

Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.


Problem 10: gravitational constant

Express Newton's constant $G$ in units $c=1$.


Problem 11: fine structure constant

Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.


Problem 12: dimensionless combinations

Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.


Problem 13: strong, weak, EM and gravity

$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.


Problem 14: the Great Unification

$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.