Difference between revisions of "Planck scales and fundamental constants"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Cosmo warm-up|5]]
 
[[Category:Cosmo warm-up|5]]
  
__NOTOC__
+
__TOC__
  
 
<div id="Okun1"></div>
 
<div id="Okun1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 1: frequency or energy? ===
 
Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?
 
Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 19: Line 19:
 
<div id="Okun2"></div>
 
<div id="Okun2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
=== Problem 2: energy, momentum and mass ===
 
In special relativity mass is determined by the relation
 
In special relativity mass is determined by the relation
 
\[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\]
 
\[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\]
Line 34: Line 34:
 
<div id="razm15"></div>
 
<div id="razm15"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
=== Problem 3: the Planck units ===
Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (corresponding quantities are called Planck units).
+
Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 47: Line 47:
 
<div id="razm15n"></div>
 
<div id="razm15n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4 ===
+
=== Problem 4: Newton units ===
Perform the same procedure for just $c,G$. Cosidered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why there is no newton length scale?
+
Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 61: Line 61:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 5 ===
+
=== Problem 5: Planck time ===
* Compare reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with Planck time. How much longer this time is?
+
$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 74: Line 74:
 
<div id="razm17"></div>
 
<div id="razm17"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6 ===
+
=== Problem 6: gravitational radius for Planck mass  ===
Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton  wavelength. Recall, that gravitational radius in general relativity is a radius of the spherically symmetric mass, for which the escape velocity at the surface is equal to speed of light.
+
Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton  wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 87: Line 87:
 
<div id="razm18"></div>
 
<div id="razm18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7 ===
+
=== Problem 7: 1GeV ===
 
Demonstrate, that in  the units $c=\hbar=1$
 
Demonstrate, that in  the units $c=\hbar=1$
 
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
 
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
 
1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c
 
1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c
 
\approx 2\cdot 10^{-14}\,cm.\]
 
\approx 2\cdot 10^{-14}\,cm.\]
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>-->
 +
</div>
  
  
Line 103: Line 104:
 
<div id="razm18new"></div>
 
<div id="razm18new"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
=== Problem 8: age of the Universe in Planck units ===
In units $\hbar =c=1$ estimate the energy scale, which correspond to current age of the Universe.
+
In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.
<div class="NavFrame collapsed">
+
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>-->
 +
</div>
  
  
Line 116: Line 118:
 
<div id="razm19"></div>
 
<div id="razm19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9 ===
+
=== Problem 9: Planck mass in different units ===
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 129: Line 131:
 
<div id="razm19n"></div>
 
<div id="razm19n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10 ===
+
=== Problem 10: gravitational constant ===
 
Express Newton's constant $G$ in units $c=1$.
 
Express Newton's constant $G$ in units $c=1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 142: Line 144:
 
<div id="razm20"></div>
 
<div id="razm20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11 ===
+
=== Problem 11: fine structure constant ===
 
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 155: Line 157:
 
<div id="razm21"></div>
 
<div id="razm21"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12 ===
+
=== Problem 12: dimensionless combinations ===
Construct a dimensionless combination from the constants $c,\ \hbar,\ e,\ G$ in the space of arbitrary dimension.
+
Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 170: Line 172:
 
<div id="razm35"></div>
 
<div id="razm35"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13 ===
+
=== Problem 13: strong, weak, EM and gravity ===
* Compare the constants of strong, weak, electromagnetic and gravitational interactions.
+
$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
   <div class="NavHead">solution</div>
+
   <div class="NavHead">no solution yet</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
Line 183: Line 185:
 
<div id="razm36"></div>
 
<div id="razm36"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14 ===
+
=== Problem 14: the Great Unification ===
* Estimate the order of magnitude of thetemperature of Great Unification (the temperature when intensity of gravitation comes up to intensities of three other interactions).
+
$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Revision as of 13:39, 11 October 2012


Problem 1: frequency or energy?

Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?


Problem 2: energy, momentum and mass

In special relativity mass is determined by the relation \[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\] This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?


Problem 3: the Planck units

Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).


Problem 4: Newton units

Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?


Problem 5: Planck time

$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?


Problem 6: gravitational radius for Planck mass

Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.


Problem 7: 1GeV

Demonstrate, that in the units $c=\hbar=1$ \[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad 1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c \approx 2\cdot 10^{-14}\,cm.\]


Problem 8: age of the Universe in Planck units

In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.


Problem 9: Planck mass in different units

Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.


Problem 10: gravitational constant

Express Newton's constant $G$ in units $c=1$.


Problem 11: fine structure constant

Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.


Problem 12: dimensionless combinations

Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.


Problem 13: strong, weak, EM and gravity

$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.


Problem 14: the Great Unification

$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.