Difference between revisions of "Planck scales and fundamental constants"

From Universe in Problems
Jump to: navigation, search
Line 80: Line 80:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">$r_g={{2GM_{_{Pl}}} \over {c^2}} = {\hbar  \over M_{_{Pl}}c} = l_{_{Pl}}$</p>
 
     <p style="text-align: left;">$r_g={{2GM_{_{Pl}}} \over {c^2}} = {\hbar  \over M_{_{Pl}}c} = l_{_{Pl}}$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7: gravitational radius for Planck mass  ===
 +
Show that for any Standard Model particle quantum gravity effects are completely negligible at the particle level.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Quantum gravity effects can be neglected in the case when the Compton wavelength $\lambda _c  = \frac{\hbar }{{mc}}$ of the particle is much greater than the Schwarzschild radius $r_s  = \frac{{2mG}}{{c^2 }}$. Parameter that defines the role of quantum gravity,\[\frac{\lambda _c }{r_s } \approx \frac{m_{Pl}^2}{m^2}\]
 +
For example, for an electron \[\frac{\lambda _c }{r_s} \approx 10^{45}\]
 +
so quantum gravity effects are completely negligible. The same is true for all other Standard Model particles.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 87: Line 102:
 
<div id="razm18"></div>
 
<div id="razm18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7: 1GeV ===
+
=== Problem 8: 1GeV ===
 
Demonstrate, that in  the units $c=\hbar=1$
 
Demonstrate, that in  the units $c=\hbar=1$
 
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
 
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
Line 104: Line 119:
 
<div id="razm18new"></div>
 
<div id="razm18new"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8: age of the Universe in Planck units ===
+
=== Problem 9: age of the Universe in Planck units ===
 
In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.
 
In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.
 
<!-- <div class="NavFrame collapsed">
 
<!-- <div class="NavFrame collapsed">
Line 118: Line 133:
 
<div id="razm19"></div>
 
<div id="razm19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9: Planck mass in different units ===
+
=== Problem 10: Planck mass in different units ===
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 131: Line 146:
 
<div id="razm19n"></div>
 
<div id="razm19n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10: gravitational constant ===
+
=== Problem 11: gravitational constant ===
 
Express Newton's constant $G$ in units $c=1$.
 
Express Newton's constant $G$ in units $c=1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 144: Line 159:
 
<div id="razm20"></div>
 
<div id="razm20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11: fine structure constant ===
+
=== Problem 12: fine structure constant ===
 
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 157: Line 172:
 
<div id="razm21"></div>
 
<div id="razm21"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12: dimensionless combinations ===
+
=== Problem 13: dimensionless combinations ===
 
Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.
 
Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 172: Line 187:
 
<div id="razm35"></div>
 
<div id="razm35"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13: strong, weak, EM and gravity ===
+
=== Problem 14: strong, weak, EM and gravity ===
 
$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 
$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 185: Line 200:
 
<div id="razm36"></div>
 
<div id="razm36"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14: the Great Unification ===
+
=== Problem 15: the Great Unification ===
 
$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.
 
$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 19:34, 5 November 2012


Problem 1: frequency or energy?

Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?


Problem 2: energy, momentum and mass

In special relativity mass is determined by the relation \[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\] This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?


Problem 3: the Planck units

Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (the corresponding quantities are called Planck units).


Problem 4: Newton units

Perform the same procedure for just $c,G$. The considered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why is there no Newton length scale?


Problem 5: Planck time

$^*$ Compare the reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with the Planck time. How much longer this time is?


Problem 6: gravitational radius for Planck mass

Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton wavelength. The gravitational radius of General Relativity can be calculated in Newtonian mechanics as the radius of a spherically symmetric mass, for which the escape velocity at the surface is equal to the speed of light.


Problem 7: gravitational radius for Planck mass

Show that for any Standard Model particle quantum gravity effects are completely negligible at the particle level.


Problem 8: 1GeV

Demonstrate, that in the units $c=\hbar=1$ \[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad 1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c \approx 2\cdot 10^{-14}\,cm.\]


Problem 9: age of the Universe in Planck units

In units $\hbar =c=1$ estimate the energy scale, which corresponds to the current age of the Universe.


Problem 10: Planck mass in different units

Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.


Problem 11: gravitational constant

Express Newton's constant $G$ in units $c=1$.


Problem 12: fine structure constant

Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.


Problem 13: dimensionless combinations

Construct a dimensionless combination from the constants $c$, $\hbar$, $e$, and $G$ in the space of arbitrary dimension.


Problem 14: strong, weak, EM and gravity

$^*$ Compare the constants of strong, weak, electromagnetic and gravitational interactions.


Problem 15: the Great Unification

$^*$ Estimate the order of magnitude of the temperature of Great Unification: the temperature when intensity of gravitation comes up to intensities of the three other interactions.