Difference between revisions of "Planck scales and fundamental constants"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Cosmo warm-up|5]]
 
[[Category:Cosmo warm-up|5]]
 +
 +
__NOTOC__
 +
 +
<div id="Okun1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="Okun2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
In special relativity mass is determined by the relation
 +
\[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\]
 +
This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (corresponding quantities are called Planck units).
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm15n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Perform the same procedure for just $c,G$. Cosidered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why there is no newton length scale?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm16"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
* Compare reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with Planck time. How much longer this time is?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm17"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton  wavelength. Recall, that gravitational radius in general relativity is a radius of the spherically symmetric mass, for which the escape velocity at the surface is equal to speed of light.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm18"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Demonstrate, that in  the units $c=\hbar=1$
 +
\[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad
 +
1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c
 +
\approx 2\cdot 10^{-14}\,cm.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm18new"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
In units $\hbar =c=1$ estimate the energy scale, which correspond to current age of the Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm19n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Express Newton's constant $G$ in units $c=1$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm20"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm21"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Construct a dimensionless combination from the constants $c,\ \hbar,\ e,\ G$ in the space of arbitrary dimension.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm35"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
* Compare the constants of strong, weak, electromagnetic and gravitational interactions.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="razm36"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
* Estimate the order of magnitude of thetemperature of Great Unification (the temperature when intensity of gravitation comes up to intensities of three other interactions).
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>

Revision as of 02:01, 11 September 2012



Problem 1

Consider some physical quantity $A$. The multiplication of $A$ by any power of arbitrary fundamental constant, certainly changes it's dimensionality, but not the physical meaning. For example, the quantity $e\equiv E/c^2$ is energy, despite it has the dimensionality of mass. Why, then, we call the quantity $E/\hbar$ frequency, but not energy, despite that Planck constant $\hbar$, like speed of light $c$, is fundamental constant?


Problem 1

In special relativity mass is determined by the relation \[m^{2}=e^{2}-p^{2},\qquad e=E/c^{2}.\] This expression presents the simpliest possible relation between energy, momentum and mass. Why the relation between these quantities could not be linear?


Problem 1

Construct the quantities with dimensionalities of length, time, mass, temperature, density from fundamental constants $c, G, \hbar$ and calculate their values (corresponding quantities are called Planck units).


Problem 1

Perform the same procedure for just $c,G$. Cosidered quantities are called Newton units. Construct, in particular, the Newton force unit and Newton power unit. What is the physical meaning of these quantities? Why there is no newton length scale?


Problem 1

  • Compare reception delay of an object, located at $1~\mbox{m}$ from flat mirror, with Planck time. How much longer this time is?


Problem 1

Demonstrate, that gravitational radius of a particle with Planck mass coincides with it's Compton wavelength. Recall, that gravitational radius in general relativity is a radius of the spherically symmetric mass, for which the escape velocity at the surface is equal to speed of light.


Problem 1

Demonstrate, that in the units $c=\hbar=1$ \[1\,GeV\approx 1.8\cdot 10^{-24}\, g;\quad 1\, GeV^{-1}\approx 0.7\cdot 10^{-24}\,c \approx 2\cdot 10^{-14}\,cm.\]


Problem 1

In units $\hbar =c=1$ estimate the energy scale, which correspond to current age of the Universe.


Problem 1

Express Planck mass in terms of $K$, $cm^{-1}$, $s^{-1}$.


Problem 1

Express Newton's constant $G$ in units $c=1$.


Problem 1

Show that the fine structure constant $\alpha=e^2/\hbar c$ is dimensionless only in the space of dimension $D=3$.


Problem 1

Construct a dimensionless combination from the constants $c,\ \hbar,\ e,\ G$ in the space of arbitrary dimension.


Problem 1

  • Compare the constants of strong, weak, electromagnetic and gravitational interactions.


Problem 1

  • Estimate the order of magnitude of thetemperature of Great Unification (the temperature when intensity of gravitation comes up to intensities of three other interactions).