Difference between revisions of "Polytropic equation of state"

From Universe in Problems
Jump to: navigation, search
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
[[Category:Dynamics of the Universe in the Big Bang Model|3]]
 
[[Category:Dynamics of the Universe in the Big Bang Model|3]]
  
__NOTOC__
+
__TOC__
  
  
 
<div id="polytr1"></div>
 
<div id="polytr1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 1: generalized polytropic EoS ===
Consider a generalized polytropic equation of state of the form \[
+
Consider a generalized polytropic equation of state of the form  
p = w\rho  + k\rho ^{1 + 1/n}  
+
\[p = w\rho  + k\rho ^{1 + 1/n} \]
\]
+
This equation of state represents the sum of the standard linear term $w\rho $ and the polytropic term $k\rho ^{\gamma } $, where $k$ is the polytropic constant and $\gamma \equiv 1+1/n$ is the polytropic index. We assume $-1\le w\le 1$. Analyze the cosmological solutions for different values of parameters $w,k,n$.  
This equation of state represent the sum of a standard linear equation of state $p=w\rho $ and a polytropic equation of state $p=k\rho ^{\gamma } $, where $k$ is the polytropic constant and $\gamma \equiv 1+1/n$ is the polytropic index. We assume $-1\le w\le 1$. Проанализируйте характер космологических решений для различных значений параметров $w,k,n$. [http://arxiv.org/abs/1208.0797 P-H. Chavanis, arXiv:1208.0797]
+
 
 +
[http://arxiv.org/abs/1208.0797 P-H. Chavanis, arXiv:1208.0797]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">For an equation of state of the form $p=w\rho +k\rho ^{1+1/n} $ with positive index $n>0$, the polytropic component dominates the linear component when the density is high. These models describe the early Universe. Conversely, when$n<0$, the polytropic component dominates the linear component when the density is low. These models will be studied in '''Section 9.5.1???''', describe the late Universe. Case $w+k\rho ^{1/n} \ge -1$corresponds to the "normal" case where the density decreases with the increase  of scale factor.  The opposite case $w+k\rho ^{1/n} <-1$, leading to a "phantom universe" where the density increases with the increase  of scale factor '''(see 9.5.4)???'''</p>
+
     <p style="text-align: left;">For the given equation of state with positive index $n>0$, the polytropic term is  dominating when the density is high. Such models describe the early Universe. Conversely, when $n<0$, the polytropic term dominates the linear term when the density is low. These models will be studied in '''Section 9.5.1???''', and describe the late Universe. The case $w+k\rho ^{1/n} \ge -1$ corresponds to the "normal" case when  density decreases with the increase  of scale factor.  The opposite case $w+k\rho ^{1/n} <-1$ corresponds to the "phantom universe", in which density increases with the increase  of scale factor '''(see 9.5.4)???'''</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 22: Line 23:
 
<div id="polytr2"></div>
 
<div id="polytr2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
=== Problem 2: $\rho(a)$ ===
For the equation of state }$p=w\rho +k\rho ^{1+1/n} $ (\textbf{$1+w+k\rho ^{1/n} >0$) find dependence $\rho (a)$and analyze limits $a\to 0$и $a\to \infty $. [http://arxiv.org/abs/1208.0797 P-H. Chavanis, arXiv:1208.0797]
+
Find the dependence $\rho (a)$ and analyze the limits $a\to 0$ and $a\to \infty$ for the equation of state $p=w\rho +k\rho ^{1+1/n}$ ($1+w+k\rho ^{1/n} >0$).
 +
 
 +
[http://arxiv.org/abs/1208.0797 P-H. Chavanis, arXiv:1208.0797]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 48: Line 51:
 
<div id="polytr3"></div>
 
<div id="polytr3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
 
For the equation of state }$p=w\rho +k\rho ^{1+1/n} $ (\textbf{$1+w+k\rho ^{1/n} >0$) find a possible inflexion point$(q=\ddot{a}=0)$ in the curve $a(t)$. Consider the case only flat Universe.
+
=== Problem 3: inflection points ===
 +
Find the possible inflection point $q=\ddot{a}=0$ of the curve $a(t)$ for the equation of state $p=w\rho +k\rho ^{1+1/n} $ ($1+w+k\rho ^{1/n} >0$) in a flat Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">We can rewrite generalized polytropic equation of state as
+
     <p style="text-align: left;">We can rewrite the generalized polytropic equation of state as
 
\[\begin{array}{l} {p=w(t)\rho ,} \\ {w(t)=w\pm \left(w+1\right)\left(\frac{\rho }{\rho _{*} } \right)^{1/n} } \end{array}\]  
 
\[\begin{array}{l} {p=w(t)\rho ,} \\ {w(t)=w\pm \left(w+1\right)\left(\frac{\rho }{\rho _{*} } \right)^{1/n} } \end{array}\]  
 
For a flat Universe
 
For a flat Universe
 
\[q(t)=\frac{1+3w(t)}{2} =\frac{1+3w}{2} \pm \frac{3}{2} \left(w+1\right)\left(\frac{\rho }{\rho _{*} } \right)^{1/n} \]  
 
\[q(t)=\frac{1+3w(t)}{2} =\frac{1+3w}{2} \pm \frac{3}{2} \left(w+1\right)\left(\frac{\rho }{\rho _{*} } \right)^{1/n} \]  
It follows that critical density$\rho _{c} $corresponding to inflexion point $q=0$ is
+
Then the critical density $\rho _{c}$, corresponding to the inflection point $q=0$, is
\[\rho _{c} =\rho _{*} \left[\mp \frac{1+3w}{3(1+w)} \right]^{n} \]  
+
\[\rho _{c} =\rho _{*} \left[\mp \frac{1+3w}{3(1+w)} \right]^{n}. \]  
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 67: Line 71:
 
<div id="polytr4"></div>
 
<div id="polytr4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
  
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Latest revision as of 01:39, 3 December 2012



Problem 1: generalized polytropic EoS

Consider a generalized polytropic equation of state of the form \[p = w\rho + k\rho ^{1 + 1/n} \] This equation of state represents the sum of the standard linear term $w\rho $ and the polytropic term $k\rho ^{\gamma } $, where $k$ is the polytropic constant and $\gamma \equiv 1+1/n$ is the polytropic index. We assume $-1\le w\le 1$. Analyze the cosmological solutions for different values of parameters $w,k,n$.

P-H. Chavanis, arXiv:1208.0797


Problem 2: $\rho(a)$

Find the dependence $\rho (a)$ and analyze the limits $a\to 0$ and $a\to \infty$ for the equation of state $p=w\rho +k\rho ^{1+1/n}$ ($1+w+k\rho ^{1/n} >0$).

P-H. Chavanis, arXiv:1208.0797


Problem 3: inflection points

Find the possible inflection point $q=\ddot{a}=0$ of the curve $a(t)$ for the equation of state $p=w\rho +k\rho ^{1+1/n} $ ($1+w+k\rho ^{1/n} >0$) in a flat Universe.


Problem 4