Difference between revisions of "Primary Nucleosynthesis"

From Universe in Problems
Jump to: navigation, search
 
Line 11: Line 11:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">Though total number of baryons is conserved, they can transform to each other in reactions of the type $n{\nu _e} \leftrightarrow p{e^-},  n{e^+} \leftrightarrow p{\bar \nu}_e.$ If their rates are sufficiently high to support the thermal equilibrium in the expanding Universe, then
Though total number of baryons is conserved, they can transform to each other in reactions of the type $n{\nu _e} \leftrightarrow p{e^-},  n{e^+} \leftrightarrow p{\bar \nu}_e.$ If their rates are sufficiently high to support the thermal equilibrium in the expanding Universe, then
+
 
$$
 
$$
 
\frac{n_n}{n_p} = \left(\frac{m_n}{m_p}\right)^{3/2}e^{-\left(m_n - m_p\right)/T} \approx e^{-\Delta m/T},
 
\frac{n_n}{n_p} = \left(\frac{m_n}{m_p}\right)^{3/2}e^{-\left(m_n - m_p\right)/T} \approx e^{-\Delta m/T},
 
$$
 
$$
where $m_p = 938.272\,MeV,\;m_n = 939.565\,MeV;\Delta m = m_n - m_p = 1.293\,MeV.$
+
where $m_p = 938.272\,MeV,\;m_n = 939.565\,MeV;\Delta m = m_n - m_p = 1.293\,MeV.$</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 30: Line 28:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">In order to know whether the thermal equilibrium is supported one needs to compare the rate of Universe expansion with that of the reactions, required to provide the equilibrium. The reaction rate
In order to know whether the thermal equilibrium is supported one needs to compare the rate of Universe expansion with that of the reactions, required to provide the equilibrium. The reaction rate
+
 
(per neutron) is given by the expression \[\Gamma  = n\left\langle \sigma v\right\rangle,\] where $n$ is the number density of the target particles (neutrinos or electrons in the case under consideration),
 
(per neutron) is given by the expression \[\Gamma  = n\left\langle \sigma v\right\rangle,\] where $n$ is the number density of the target particles (neutrinos or electrons in the case under consideration),
 
$$
 
$$
Line 52: Line 49:
 
$$
 
$$
 
Using that ${g^*} = 10.75,$ one can obtain that $T_f\simeq1.2\,MeV$.
 
Using that ${g^*} = 10.75,$ one can obtain that $T_f\simeq1.2\,MeV$.
More accurate calculations give the value ${T_f} \approx 0.7\,MeV.$
+
More accurate calculations give the value ${T_f} \approx 0.7\,MeV.$</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 66: Line 62:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">$$\frac{n_n}{n_p} = e^{ - \left( m_n - m_p \right)/T_f} \approx e^{ -
$$
+
\frac{n_n}{n_p} = e^{ - \left( m_n - m_p \right)/T_f} \approx e^{ -
+
 
1.3/0.7} \approx 0.16.
 
1.3/0.7} \approx 0.16.
$$
+
$$</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 84: Line 77:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">In the region $T \sim 1\,MeV,\;{g^*} =
In the region $T \sim 1\,MeV,\;{g^*} =
+
 
10.75\;$ the relation between time and temperature can be presented in the following form (see  [[Peculiarities_of_Thermodynamics_in_Early_Universe#ter_16|problem]] and [[Peculiarities_of_Thermodynamics_in_Early_Universe#ter_20|problem]]) $tT^2
 
10.75\;$ the relation between time and temperature can be presented in the following form (see  [[Peculiarities_of_Thermodynamics_in_Early_Universe#ter_16|problem]] and [[Peculiarities_of_Thermodynamics_in_Early_Universe#ter_20|problem]]) $tT^2
 
\approx 0.75\ \mbox{s}\cdot\,MeV^2$, and it follows for $T \approx
 
\approx 0.75\ \mbox{s}\cdot\,MeV^2$, and it follows for $T \approx
0.7\,\,MeV$ that $t \approx 1.5\,s$.
+
0.7\,\,MeV$ that $t \approx 1.5\,s$.</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
 +
  
 
<div id="therm41n"></div>
 
<div id="therm41n"></div>
Line 100: Line 93:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;"></p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
 +
  
 
<div id="therm42n"></div>
 
<div id="therm42n"></div>
Line 113: Line 106:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;"></p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 163: Line 154:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 174: Line 164:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;"></p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 190: Line 177:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;"></p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
  
Line 203: Line 186:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 10 ===
 
=== Problem 10 ===
What changes in relative ${}^4 He$ abundance would be caused by
+
What changes in relative ${}^4 He$ abundance would be caused by<br/>
  
a) decreasing of average neutron lifetime $\tau_n$;
+
a) decreasing of average neutron lifetime $\tau_n$;<br/>
 
+
b) decreasing or increasing of the temperature of
+
  freeze-out $T_f$?
+
 
    
 
    
 +
b) decreasing or increasing of the temperature of freeze-out $T_f$?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;"></p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
  
Line 230: Line 207:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">Synthesis of deuterium presents a critically important step to synthesis of $^4He$, because the direct synthesis of helium from two protons and two neutrons is highly improbable event. After creation of deuterium the helium synthesis proceeds along the following reactions:
Synthesis of deuterium presents a critically important step to synthesis of $^4He$, because the direct synthesis of helium from two protons and two neutrons is highly improbable event. After creation of deuterium the helium synthesis proceeds along the following reactions:
+
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
Line 240: Line 216:
 
   t + d \to ^4He + n.\\
 
   t + d \to ^4He + n.\\
 
\end{gathered}
 
\end{gathered}
$$
+
$$</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
  
Line 256: Line 229:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">There are no natural stable nuclei with $A=5$, therefore one should consider only fusion of $^4He$ with tritium and $^3He$:
There are no natural stable nuclei with $A=5$, therefore one should consider only fusion of $^4He$ with tritium and $^3He$:
+
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
Line 268: Line 240:
 
^8Be + ^4He \to ^{12}C + \gamma
 
^8Be + ^4He \to ^{12}C + \gamma
 
$$
 
$$
is inefficient: low density of the reactants leads to the fact that the mean time between the collisions of the nuclei considerable exceeds the lifetime of the unstable nucleus $^8Be.$ This reaction becomes important in stars, but it does not make importance in early Universe. Thus the absence of stable elements with $A=5$ and $A=8$ makes it impossible to proceed beyond the $^7Li$ in primary nucleosynthesis.
+
is inefficient: low density of the reactants leads to the fact that the mean time between the collisions of the nuclei considerable exceeds the lifetime of the unstable nucleus $^8Be.$ This reaction becomes important in stars, but it does not make importance in early Universe. Thus the absence of stable elements with $A=5$ and $A=8$ makes it impossible to proceed beyond the $^7Li$ in primary nucleosynthesis.</p>
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
  
Line 284: Line 253:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;"></p>
 
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 300: Line 266:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">At $t\sim 1000\, s$ the temperature falls down to $T \approx 0.03\,MeV$. After that moment the kinetic energy of nuclei is insufficient to overcome the Coulomb barrier and the synthesis processes stop.</p>
At $t\sim 1000\, s$ the temperature falls down to $T \approx 0.03\,MeV$. After that moment the kinetic energy of nuclei is insufficient to overcome the Coulomb barrier and the synthesis processes stop.
+
</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 06:50, 2 October 2012



Problem 1

Find the ratio of neutrons to protons number densities in the case of thermal equilibrium between them.


Problem 2

Up to what temperature can the reaction $n\nu_e\leftrightarrow pe^-$ support thermal equilibrium between protons and neutrons in the expanding Universe


Problem 3

Determine the ratio $n_n/n_p$ at the temperature of freeze-out.


Problem 4

Determine the age of Universe when it reached the temperature of freeze-out.


Problem 5

At what temperature and at what time did efficient deuterium synthesis start?


Problem 6

Determine the time period during which the synthesis of light elements took place.


Problem 7

Determine the ratio of neutrons to protons number densities at temperature interval from the freeze-out to the creation of deuterium.


Problem 8

Determine the relative abundance of ${}^4He$ in the Universe


Problem 9

How many helium atoms are there for each hydrogen atom?


Problem 10

What changes in relative ${}^4 He$ abundance would be caused by

a) decreasing of average neutron lifetime $\tau_n$;

b) decreasing or increasing of the temperature of freeze-out $T_f$?


Problem 11

What nuclear reactions provided the ${}^4 He$ synthesis in the early Universe?


Problem 12

Why is synthesis of elements heavier than ${}^7 Li$ suppressed in the early Universe?


Problem 13

In our Universe the neutron half-value period (the life-time) approximately equals to 600 seconds. What would the relative helium abundance be if the neutron life-time decreased down to 100 seconds?


Problem 14

At what temperature in Universe did the synthesis reactions stop?