Difference between revisions of "Statefinder parameters for interacting dark energy and cold dark matter"

From Universe in Problems
Jump to: navigation, search
(Problem 2)
(Problem 4)
 
(4 intermediate revisions by the same user not shown)
Line 48: Line 48:
 
  & r=1+\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}} \\  
 
  & r=1+\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}} \\  
 
\end{align}\]  
 
\end{align}\]  
For statefinder$s$ obtain
+
For statefinder $s$ obtain
 
\[\begin{align}
 
\[\begin{align}
  & s=\frac{r-1}{3\left( q-1/2 \right)}=\frac{\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}}}{3\left( -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2} \right)}, \\  
+
  & s=\frac{r-1}{3\left( q-1/2 \right)}=\frac{\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}}}{3\left( -\frac{\ddot{a}}{a{{H}^{2}}}-\frac{1}{2} \right)}, \\  
  & -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2}=\frac{-\frac{{\ddot{a}}}{a}-\frac{{{H}^{2}}}{2}}{{{H}^{2}}}=\frac{3}{2}\frac{p}{\rho }, \\  
+
  & -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2}=\frac{-\frac{\ddot{a}}{a}-\frac{{H}^{2}}{2}}{{H}^{2}}=\frac{3}{2}\frac{p}{\rho }, \\  
  & s=\frac{\rho +p}{p}\frac{{\dot{p}}}{{\dot{\rho }}} \\  
+
  & s=\frac{\rho +p}{p}\frac{\dot{p}}{\dot{\rho }} \\  
 
\end{align}\]
 
\end{align}\]
 
+
Finally
  
 
\begin{align}
 
\begin{align}
Line 60: Line 60:
 
r & =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\\
 
r & =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\\
 
\nonumber
 
\nonumber
s & =\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}}.
+
s & =\frac{\rho_{tot}+p_{tot}}{p_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}}.
 
\end{align}
 
\end{align}
 
Use the relation $\dot\rho_{tot}=-3H(\rho_{tot}+p_{tot})$ and the interaction $Q$ in the form $Q=-3H\Pi$ to obtain
 
Use the relation $\dot\rho_{tot}=-3H(\rho_{tot}+p_{tot})$ and the interaction $Q$ in the form $Q=-3H\Pi$ to obtain
Line 113: Line 113:
 
r & =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\\
 
r & =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\\
 
\nonumber
 
\nonumber
s & =\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},
+
s & =\frac{\rho_{tot}+p_{tot}}{p_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},
 
\end{align}
 
\end{align}
 
to obtain
 
to obtain
Line 126: Line 126:
 
<div id="IDE_92"></div>
 
<div id="IDE_92"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 5 ===
 
=== Problem 5 ===
 
Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]
 
Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]

Latest revision as of 11:16, 18 February 2015




Problem 1

(after [1])

Show that in flat Universe both the Hubble parameter and deceleration parameter do not depend on whether or not dark components are interacting. Become convinced the second derivative $\ddot H$ does depend on the interaction between the components.


Problem 2

Find statefinder parameters for interacting dark energy and cold dark matter.


Problem 3

Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.


Problem 4

Find relation between the statefinder parameters in the flat Universe.


Problem 5

Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]


Problem 6

Find the statefinder parameters for $Q=3\delta H\rho_{dm}$, assuming that $w_{de}=const$.


Problem 7

Find statefinder parameters for the case $\rho_{dm}/\rho_{de}=a^{-\xi}$, where $\xi$ is a constant parameter in the range $[0,3]$ and $w_{de}=const$.


Problem 8

Show that in the case $\rho_{dm}/\rho_{de}=a^{-\xi}$ the current value of the statefinder parameter $s=s_0$ can be used to measure the deviation of cosmological models from the SCM.


Problem 9

Find how the statefinder parameters enter the expression for the luminosity distance.