Difference between revisions of "Statefinder parameters for interacting dark energy and cold dark matter"

From Universe in Problems
Jump to: navigation, search
Line 2: Line 2:
  
 
__NOTOC__
 
__NOTOC__
 +
 +
 +
 +
 +
<div id="IDE_88"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
(after  [http://arxiv.org/abs/gr-qc/0311067])
 +
 +
Show that in flat Universe both the Hubble parameter and deceleration parameter do not depend on whether or not dark components are interacting. Become convinced the second derivative $\ddot H$ does depend on the interaction between the components.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In flat universe the Hubble parameter is determined solely by the density $H^2\propto\rho_{tot}$. The deceleration parameter
 +
\[q=-1-\frac{\dot H}{H^2}=\frac12(1+3w_{de}\Omega_{de}).\]
 +
It is obvious, that neither the Hubble parameter nor deceleration parameter depend on whether or not dark components are interacting.
 +
 +
Consider the following dimensionless combination
 +
\[\frac{\ddot H}{H^3}=\frac92\left(1+\frac{p_{de}}{\rho_{tot}}\right)+\frac92\left[w_{de}(1+w_{de})\frac{p_{de}}{\rho_{tot}} - w_{de}\frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3H}\frac{p_{de}}{\rho_{tot}}\right].\]
 +
 +
Unlike $H$ or $\dot H$, the second derivative $\ddot H$ does depend on the interaction between the components. Consequently, to discriminate between models with different interactions or between interacting and non-interacting models it is desirable to characterize the cosmological dynamics additionally by parameters that depend on $\ddot H$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_89"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
Find  statefinder parameters for interacting dark energy and cold dark matter.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Statefinder parameters in the general case can be presented in the following form
 +
\begin{align}
 +
\nonumber
 +
r & =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\\
 +
\nonumber
 +
s & =\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}}.
 +
\end{align}
 +
Use the relation $\dot\rho_{tot}=-3H(\rho_{tot}+p_{tot})$ and the interaction $Q$ in the form $Q=-3H\Pi$ to obtain
 +
\begin{align}
 +
\nonumber
 +
r & =1+\frac92\frac{w_{de}}{1+\kappa}\left[1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}\right], \quad \kappa \equiv\frac{\rho_{dm}}{\rho_{de}},\\
 +
\nonumber
 +
s & =1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}.
 +
\end{align}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_90"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">This becomes obvious from the general relation
 +
\[r =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\]
 +
where $p_{tot}$ in this case of interacting dark energy and cold dark matter  reduces to $p_{tot}\approx p_{de}$. Since
 +
\[\frac{d}{dt}\left(\frac p \rho\right)=\frac{\dot\rho}\rho\left(\frac{\dot p}{\dot\rho}-\frac p\rho\right)\]
 +
it is evident, that an interaction term in $\dot p\approx \dot p_{de}$ according to conservation equation will additionally change the time dependence of the overall equation of state parameter $p/\rho$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_91"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
Find relation between the statefinder parameters in the flat Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Use the relations
 +
\begin{align}
 +
\nonumber
 +
r & =1+\frac92\frac{w_{de}}{1+\kappa}\left[1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}\right], \quad \kappa \equiv\frac{\rho_{dm}}{\rho_{de}},\\
 +
\nonumber
 +
s & =1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}.
 +
\end{align}
 +
to obtain
 +
\[r = 1+\frac92w_{de}\Omega_{de}s,\]
 +
Then use
 +
\begin{align}
 +
\nonumber
 +
r & =1+\frac92\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},\\
 +
\nonumber
 +
s & =\frac{\rho_{tot}+p_{tot}}{\rho_{tot}}\frac{\dot p_{tot}}{\dot\rho_{tot}},
 +
\end{align}
 +
to obtain
 +
\[r=1+\frac92\frac{p_{tot}}{\rho_{tot}}s.\]
 +
The first result obviously follows from the second one:
 +
\[r=1+\frac92\frac{p_{tot}}{\rho_{tot}}s =1+\frac92\frac{p_{de}}{\rho_{de}+\rho_{dm}}s =1+\frac92\frac{w_{de}\rho_{de}}{\rho_{de}+\rho_{dm}}s=1+\frac92\frac{w_{de}\Omega_{de}}{\Omega_{de}+\Omega_{dm}}s = 1+\frac92w_{de}\Omega_{de}s.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_92"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Substitute \[w_{(de)eff}=w_{de}-\frac\Pi{\rho_{de}}\] into
 +
\[s =1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}\]
 +
to obtain
 +
\[s =1+w_{(de)eff}- \frac{w'_{de}}{3w_{de}},\]
 +
where prime denotes derivative with respect to $u=\ln a$. Statefinder parameter $r$ can be found using the relation
 +
\[r=1+\frac92w_{de}\Omega_{de}s.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_93"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
Find the statefinder parameters for $Q=3\delta H\rho_{dm}$, assuming that $w_{de}=const$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In the considered case \[s=1+w_{de}-\frac\Pi{\rho_{de}}.\]
 +
Substitute \[\Pi=-\delta\frac{\rho_{dm}}{\rho_{de}}\] to find
 +
\[s=1+w_{de}+\delta(\Omega_{de}^{-1}-1),\quad r=1+\frac92w_{de}\Omega_{de}s.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_94"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
Find statefinder parameters for the case $\rho_{dm}/\rho_{de}=a^{-\xi}$, where $\xi$ is a constant parameter in the range $[0,3]$ and $w_{de}=const$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">If $w_{de}=const$, the interactions which produce scaling solutions $\rho_{dm}/\rho_{de}=a^{-\xi}$ are given  by
 +
\[\frac{\Pi}{\rho_{de}}=\left(w_{de}+\frac\xi3\right)\frac{\kappa_0(1+z)^\xi}{1+\kappa_0(1+z)^\xi}\]
 +
where $\kappa_0$ denotes the present energy density ratio.  Insert this expression into
 +
\begin{align}
 +
\nonumber
 +
r & =1+\frac92\frac{w_{de}}{1+\kappa}\left[1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}\right], \quad \kappa \equiv\frac{\rho_{dm}}{\rho_{de}},\\
 +
\nonumber
 +
s & =1+w_{de}- \frac{\Pi}{\rho_{tot}} - \frac{\dot w_{de}}{3w_{de}H}
 +
\end{align}
 +
to get the statefinder parameters
 +
\begin{align}
 +
\nonumber
 +
r & =1+\frac92\frac{w_{de}}{1+\kappa_0(1+z)^\xi}\left[1+w_{de}- \left(w_{de}+\frac\xi3\right)\frac{\kappa_0(1+z)^\xi}{1+\kappa_0(1+z)^\xi}\right],\\
 +
\nonumber
 +
s & =1+w_{de}- \left(w_{de}+\frac\xi3\right)\frac{\kappa_0(1+z)^\xi}{1+\kappa_0(1+z)^\xi}.
 +
\end{align}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_95"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
Show that in the case $\rho_{dm}/\rho_{de}=a^{-\xi}$ the current value of the statefinder parameter $s=s_0$ can be used to measure the deviation of cosmological models from the SCM.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For the scaling models $\rho_{dm}/\rho_{de}=a^{-\xi}$ we have
 +
\[r_0 =1+\frac92\frac{w_{de}}{1+\kappa_0}s_0,\quad
 +
s_0 =1+w_{de}- \left(w_{de}+\frac\xi3\right)\frac{\kappa_0}{1+\kappa_0}.\]
 +
Realizing that
 +
\[q_0=\left.q\right|_{t=t_0}= \left.-\frac{\ddot a}{aH^2}\right|_{t=t_0}= \left.-\frac{\frac16(\rho_{tot}+3p_{tot})}{\frac13\rho_{tot}}\right|_{t=t_0} = \frac12\frac{1+\kappa_0+w_{de}}{1+\kappa_0}.\]
 +
Introduce
 +
\[q_{0SCM}\equiv q_)(w_{de}=-1)=-\frac12\frac{2-\kappa_0}{1+\kappa_0}.\]
 +
to present the current value of the statefinder parameter $s_0$ in the following form
 +
\[s_0(q_0,\xi)=\frac23\left[q_0-q_{0SCM}+\left(\frac\xi3-1\right)(1+q_{0SCM})\right].\]
 +
The first part in the bracket on the right hand side describes the deviation from $w_{de}=-1$, the second part accounts for the deviations from the SCM scaling $\xi=3$. Of course, $\xi=3$ corresponds to the SCM  model with $s_0=0$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="IDE_96"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9 ===
 +
Find how the statefinder parameters enter the expression for the luminosity distance.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Up to second order in the redshift the Hubble parameter is
 +
\[H(z)=H_0+\left(\frac{dH}{dz}\right)_{z=0}z+\frac12\left(\frac{d^2H}{dz^2}\right)_{z=0}z^2.\]
 +
By virtue of
 +
\[\frac{dH}{dz}=\frac{q+1}{z+1}H,\quad \frac{d^2H}{dz^2}=\frac{r-1+2(1+q)-(1+q)^2}{(1+z)^2}H,\]
 +
this can be written as
 +
\[H(z)=H_0\left\{1+(1+q_0)z+\frac12\left[r_0-1+2(1+q_0)-(1+q_0)^2\right]z^2\right\}.\]
 +
The luminosity distance
 +
\[d_L=(1+z)\int\frac{dz}H\]
 +
becomes
 +
\[d_L=\frac z{H_0}\left\{1+\frac12(1-q_0)z+\frac16\left[3(1+q_0)^2-5(1+q_0)+1-r_0\right]z^2\right\}.\]
 +
Since the interaction affects $r_0$ but neither $q_0$ nor $H$, it is obvious that the deviation of luminosity distances of different interacting as well as of interacting and non-interacting models manifests itself only in third order in the redshift.</p>
 +
  </div>
 +
</div></div>

Revision as of 03:58, 11 November 2013




Problem 1

(after [1])

Show that in flat Universe both the Hubble parameter and deceleration parameter do not depend on whether or not dark components are interacting. Become convinced the second derivative $\ddot H$ does depend on the interaction between the components.


Problem 2

Find statefinder parameters for interacting dark energy and cold dark matter.


Problem 3

Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.


Problem 4

Find relation between the statefinder parameters in the flat Universe.


Problem 5

Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]


Problem 6

Find the statefinder parameters for $Q=3\delta H\rho_{dm}$, assuming that $w_{de}=const$.


Problem 7

Find statefinder parameters for the case $\rho_{dm}/\rho_{de}=a^{-\xi}$, where $\xi$ is a constant parameter in the range $[0,3]$ and $w_{de}=const$.


Problem 8

Show that in the case $\rho_{dm}/\rho_{de}=a^{-\xi}$ the current value of the statefinder parameter $s=s_0$ can be used to measure the deviation of cosmological models from the SCM.


Problem 9

Find how the statefinder parameters enter the expression for the luminosity distance.