Difference between revisions of "Static Einstein's Universe"

From Universe in Problems
Jump to: navigation, search
(Created page with "4")
 
Line 1: Line 1:
 
[[Category:Dark Energy|4]]
 
[[Category:Dark Energy|4]]
 +
 +
 +
__NOTOC__
 +
 +
 +
<div id="DE24"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the static solution of Friedman equations with cosmological constant and non-relativistic matter (static Einstein's Universe).
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The static solution ($\dot a =0$, $\ddot a =0$) of Friedman equations with cosmological constant
 +
for the case of Universe filled with matter $\left( {p = 0} \right)$ is found from
 +
\begin{align*}
 +
0 &  = {{8\pi G} \over 3}\rho  - {k \over {a^2 }} + {\Lambda  \over 3};\\
 +
0 & =  - {{4\pi G} \over 3}\left( {\rho  + 3p}
 +
\right) + {\Lambda  \over 3}.
 +
\end{align*}
 +
Then
 +
$$
 +
\rho  = {\Lambda  \over {4\pi G}};\quad a=\sqrt{\frac{k}{\Lambda}}.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE25"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that the static Einstein's Universe must be closed. Find the total volume and mass of this Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">As it follows from the solution obtained in the previous problem, for the case $\rho  > 0$ the cosmological constant must be positive and thus $k =  + 1$. Such Universe has the geometry of the 3-sphere with radius $R = 1/\sqrt \Lambda  $, and its volume and mass are respectively
 +
$$
 +
V = 2\pi ^2 R^3  = 2\pi ^2 \Lambda ^{ - 3/2} ;\quad M = \rho V =
 +
{\pi  \over {2G}}\Lambda ^{ - 1/2}.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE26"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the parameters of static Einstein's Universe filled with cosmological constant and radiation.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$$
 +
\rho_r  = {\Lambda  \over {8\pi G}};\quad a=\frac32\sqrt{\frac{1}{\Lambda}}.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE27"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the parameters of static Einstein's Universe under the assumption that both matter and radiation are absent.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In that case \[\rho_\Lambda=\frac{1}{8\pi GR^2}=0,\] and the Einstein's Universe is reduced to flat Minkowski space-time.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE28"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Estimate the radius of static Einstein's Universe if the zero-point energy of electromagnetic field is cut off at the classical electron radius.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Let us cite [http://arxiv.org/abs/astro-ph/0203330 N.Straumann (2002) (arXiv:astro-ph/0203330)]:
 +
<br/>
 +
"From Pauli's discussions with Enz and Thellung we know that Pauli estimated the influence of the zero-point energy of the electromagnetic field---cut off at the classical electron radius---on the radius of the Universe,  and came to the conclusion that it "could not even reach to the moon":
 +
<br/>
 +
When, as a student, I heard about this, I checked Pauli's unpublished remark by doing the following little calculation:
 +
<br/>
 +
In units $\hbar=c=1$ the vacuum energy density of the electromagnetic field is
 +
\[\langle
 +
\rho_{vac}\rangle=\frac{8\pi}{(2\pi)^3}\int\limits_0^{\omega_{max}}
 +
\frac{\omega}{2}\omega^2d\omega=\frac{\omega_{max}^4}{8\pi^2},\]
 +
with
 +
\[\omega_{max}=\frac{2\pi}{\lambda_{min}}=\frac{2\pi m_e}{\alpha},\]
 +
where $m_e$ is the electron mass and $\alpha\simeq1/137$ is the fine structure constant.
 +
<br/>
 +
Using the results of the first problem of this section, one obtains
 +
\[\Lambda=\frac{4\pi\langle \rho_{vac}\rangle}{M_{Pl}^2}\Rightarrow
 +
R=\frac{1}{\sqrt\Lambda}=\frac{\alpha^2M_{Pl}}{(2\pi)^{2/3}
 +
m_e^2}\simeq31.6\mbox{\it km}.\]
 +
This is indeed less than the distance to the moon.*
 +
<br/>
 +
*It would be more consistent to use the curvature radius of the static de Sitter solution; the result is the same, up to the factor $\sqrt3$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE29"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that Einstein's Universe is unstable.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The Friedman equations in the case under consideration read:
 +
$$\ddot a =  - {{4\pi G} \over 3}\left( \rho _m  - 2\rho _\Lambda
 +
\right)a;$$
 +
\[\left(\frac{\dot a}{a}\right)^2=\frac{8\pi G}{3}(\rho_m+\rho_\Lambda)-\frac{1}{a^2}.\]
 +
From the stationarity condition $\dot a = \ddot a = 0$ one obtains the critical points
 +
\[a_0^{-2}=\frac{8\pi G}{3}(\rho_{m0}+\rho_\Lambda);\quad \rho_{m0}=2\rho_\Lambda. \]
 +
Substituting \[\rho_m  = \rho
 +
_{m0}  + \delta \rho _m ;\quad a = a_0  + \delta a\] into the second Friedman equation and keeping only the first-order terms, one obtains
 +
\[\delta \ddot a =
 +
- {{4\pi G} \over 3}\delta \rho _m.\] Taking into account that
 +
\[{{\delta \rho _m } \over {\rho _m }} =  - 3{{\delta a} \over a},\] one obtains
 +
\[\delta\rho_m=-3\frac{\delta a}{a}\rho_m=-3(\rho_{m0}+\delta\rho_m)\frac{\delta a}{a_0+\delta a}=-3\frac{\rho_{m0}}{a_0}\delta a,\] and finally the equation
 +
$${\delta \ddot a} - 4\pi G\frac{\rho _{m0}}{a_0} \delta a=0.$$
 +
The equation's general solution is:
 +
$$
 +
\delta a = C_1e^{\sqrt{4\pi G\frac{\rho_{m0}}{a_0}}\cdot t}+C_2e^{-\sqrt{4\pi G\frac{\rho_{m0}}{a_0}}\cdot t}.
 +
$$
 +
Its exponents are imaginary \[\omega=\pm i\sqrt{4\pi G\frac{\rho_{m0}}{a_0}}.\] Therefore the static Universe of Einstein is unstable.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE30"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
What are the concrete mechanisms that drive the instability of the static Einstein's Universe?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The static Einstein's Universe will follow unlimited compression in the case when matter starts to transform into radiation; or vice versa, it will unlimitedly expand if radiation transforms into matter.
 +
<br/>
 +
In the latter case the gravity source $\rho + 3p$ decreases, as the pressure of matter equals to zero. Since gravity is a damping force then the equilibrium of static Universe will be shifted towards the expansion. In the case of matter transition into radiation, the gravity source $\rho + 3p$ will increase and the equilibrium will be shifted towards the compression.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE31"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
What is the most unsatisfactory peculiarity of the static Einstein's model of the Universe (besides the instability)?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Absence of redshift for distant objects which is actually observed in the real Universe.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE32"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Construct the effective one-dimensional potential $V(a)$ for the case of flat Universe filled with non-relativistic matter and dark energy in the form of cosmological constant.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$$
 +
{{\ddot a} \over a} =  - {{4\pi G} \over 3}\rho _m  + {\Lambda \over
 +
3};\ \ddot a =  - {{\partial V} \over {\partial a}}\Rightarrow\quad V(a)
 +
= - \left( {{{4\pi G} \over 3}\rho _{m0} a^{ - 1}  + {{\Lambda a^2 }
 +
\over 6}} \right).
 +
$$
 +
(See Figure).
 +
<gallery widths=600px heights=500px>
 +
File:Diagram.jpg|
 +
</gallery>
 +
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE33"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that the static Einstein's Universe may be realized only in the maximum of the effective potential $V(a)$ of the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The condition of maximum \[{{\partial V(a)} \over {\partial a}} =
 +
0\] corresponds to the condition of realization of the static Einstein's Universe $\ddot a = 0$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE34"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Problem [[#DE32]] can be considered in more general setup.<br/>
 +
Assuming arbitrary values for the contributions of the cosmological constant $\lambda$, matter $\mu$, radiation $\gamma$ and curvature $\varkappa$ respectively, present the first Friedman equation
 +
\begin{equation}\label{Friedman4k+}
 +
H^2\equiv\left(\frac{\dot a}{a}\right)^2=\lambda-\frac{\varkappa}{a^2}+\frac{\mu}{a^3}+\frac{\gamma}{a^4}
 +
\end{equation}
 +
in the form of the energy conservation law \[p^2/2 + U(q) = E.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Equation (\ref{Friedman4k+}) can be presented in Hamiltonian form in the following four ways, depending on what variable is chosen as canonical one:
 +
\begin{eqnarray*}
 +
\begin{array}{c|c|c}
 +
q & U(q) & E\\
 +
& & \\
 +
a & -\frac12\left( \lambda q^2 + \frac{\mu}{q} + \frac{\gamma}{q^2}\right) & -\frac\varkappa2\\
 +
& & \\
 +
\ln a & -\frac12\left(\mu e^{-3q} + \gamma e^{-4q}-\varkappa e^{-2q} \right) & \frac\lambda2\\
 +
& & \\
 +
a^{3/2} & -\frac98\left(\lambda q^2 + \frac{\gamma}{q^{2/3}} - \varkappa q^{2/3} \right) & \frac98\mu\\
 +
& & \\
 +
a^2 & -2\left(\lambda q^2 +\mu\sqrt q -\varkappa q\right) & 2\gamma
 +
\end{array}
 +
\end{eqnarray*}</p>
 +
  </div>
 +
</div></div>

Revision as of 21:07, 2 December 2012




Problem 1

Find the static solution of Friedman equations with cosmological constant and non-relativistic matter (static Einstein's Universe).


Problem 1

Show that the static Einstein's Universe must be closed. Find the total volume and mass of this Universe.


Problem 1

Find the parameters of static Einstein's Universe filled with cosmological constant and radiation.


Problem 1

Find the parameters of static Einstein's Universe under the assumption that both matter and radiation are absent.


Problem 1

Estimate the radius of static Einstein's Universe if the zero-point energy of electromagnetic field is cut off at the classical electron radius.


Problem 1

Show that Einstein's Universe is unstable.


Problem 1

What are the concrete mechanisms that drive the instability of the static Einstein's Universe?


Problem 1

What is the most unsatisfactory peculiarity of the static Einstein's model of the Universe (besides the instability)?


Problem 1

Construct the effective one-dimensional potential $V(a)$ for the case of flat Universe filled with non-relativistic matter and dark energy in the form of cosmological constant.


Problem 1

Show that the static Einstein's Universe may be realized only in the maximum of the effective potential $V(a)$ of the previous problem.


Problem 1

Problem #DE32 can be considered in more general setup.
Assuming arbitrary values for the contributions of the cosmological constant $\lambda$, matter $\mu$, radiation $\gamma$ and curvature $\varkappa$ respectively, present the first Friedman equation \begin{equation}\label{Friedman4k+} H^2\equiv\left(\frac{\dot a}{a}\right)^2=\lambda-\frac{\varkappa}{a^2}+\frac{\mu}{a^3}+\frac{\gamma}{a^4} \end{equation} in the form of the energy conservation law \[p^2/2 + U(q) = E.\]