Difference between revisions of "The role of curvature in the dynamics of the Universe"

From Universe in Problems
Jump to: navigation, search
(Problem 5.)
Line 8: Line 8:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In this case the first Friedman equation takes the form
 +
\[\left(\frac{\dot a}{a}\right)^2
 +
=\frac{1}{a^2}\]
 +
therefore $a\sim t$ and thus $\rho(t) =\rho_{0}( t_{0}/t )^3$.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 22: Line 25:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The contribution of curvature to $H^{2}$ (the first Friedman equation) is $\sim a^{-2}$, that of non-relativistic matter is $\sim a^{-3}$, of radiation $\sim a^{-4}$. Therefore for sufficiently small $a$, i.e. close enough to the Big Bang, the curvature term can be neglected.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 36: Line 39:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation is often written as
 +
\[H^2 = \frac{8\pi G}{3}\rho  - \frac{k}{a^2}.\]
 +
Dividing both sides by $H^2$ and rewriting it in terms of
 +
\[\Omega  = \frac{\rho }{\rho _{cr}},
 +
\:\rho _{cr} = \frac{8\pi G}{3H^2},\]
 +
we get
 +
\[\frac{k}{a^2 H^2}=\Omega  - 1.\]
 +
As $a^2H^2>0$ and $k$ can only, by definition, take values $-1, 0, 1$,
 +
\[k = \mbox{sign}\left(\Omega-1\right).\]
 +
On the other hand, taking the absolute value of the same equation, for the present moment we get
 +
\begin{equation}\label{a-H-Om}
 +
a_{0}=\frac{H_{0}^{-1}}{\sqrt{|\Omega_0 -1|}}.
 +
\end{equation}</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 51: Line 66:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The result of the previous problem (\ref{a-H-Om}), on restoring the speed of light $c$ by dimensionality, straightforwardly gives us
 +
\begin{align*}
 +
a_{0}&>7.5\cdot cH_{0}^{-1}
 +
\quad\text{for}\quad k<0;\\
 +
a_{0}&>12.5\cdot cH_{0}^{-1}
 +
\quad\text{for}\quad k>0.
 +
\end{align*}
 +
There is no upper bound, as the observational data does not exclude (or rather, tends to imply) the possibility of a spatially flat Universe, with $a_{0}\to\infty$.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 70: Line 92:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The first Friedman equation can be expressed as
 +
\[\Omega  - 1 = \frac{k}{a^2 H^2}.\]
 +
As $a(t)\sim t^{2/[3(1+w)]}$ (see problem \ref{dyn12}), then $H\sim 1/t$ and
 +
\[\Omega-1 \sim k\;t^{\frac{2}{3}\frac{1+3w}{1+w}}.\]
 +
Finally,
 +
 
 +
'''a)''' \[\Omega-1\sim k t^{2/3};\]
 +
 
 +
'''b)''' \[\Omega-1\sim k t.\]</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
Line 99: Line 129:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Dividing the first Friedman equation by the second one, we obtain the condition for the accelerated expansion in the form
 +
\[\frac{1}{1 + 3w}
 +
\left(1 - \frac{k}{8\pi G a^{2}\rho}\right) < 0.\]
 +
 
 +
Then we immediately see that
 +
\begin{itemize}
 +
\item For a spatially flat or open Universe ($k\leq 0$) accelerated expansion corresponds to $w\leq -1/3$.
 +
\item For a spatially closed Universe the expansion is accelerating if the following conditions hold:
 +
\[\left\{\begin{array}{l}
 +
1+3w>0;\\ \rho>(8\pi G a^2)^{-1};
 +
\end{array}\right.\qquad\text{or}\qquad
 +
\left\{\begin{array}{l}
 +
1+3w<0\\ \rho<(8\pi G a^2)^{-1}.
 +
\end{array}\right.\]
 +
\end{itemize}
 +
In both variants the first inequality is the restriction on pressure, and the second one on the spatial curvature.</p>
 
   </div>
 
   </div>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:02, 19 July 2012


Problem 1.

Derive $\rho(t)$ in a spatially open Universe filled with dust for the epoch when the curvature term in the first Friedman equation is dominating.


Problem 2.

Show that in the early Universe the curvature term is negligibly small.


Problem 3.

Show that $k =\text{sign}(\Omega-1)$ and express the current value of the scale factor $a_{0}$ through the observed quantities $\Omega_{0}$ and $H_{0}$.


Problem 4.

Find the lower bound for $a_{0}$, knowing that the Cosmic background (CMB) data combined with SSNIa data imply \[-0.0178<(1-\Omega)<0.0063.\]


Problem 5.

Fnd the time dependence of $\left|\Omega-1\right|$ in a Universe with domination of

a) radiation,

b) matter.


Problem 6.

Estimate the upper bound of the curvature term in the first Friedman equation during the electroweak epoch ($t\sim 10^{-10}$~s) and the nucleosynthesis epoch ($t\sim 1-200$~s).


Problem 7.

Derive and analyze the conditions of accelerated expansion for a one-component Universe of arbitrary curvature with the component's state parameter S.Kumar arXiv: 1109.6924 $w$.