Difference between revisions of "Thermodynamical Properties of Elementary Particles"

From Universe in Problems
Jump to: navigation, search
 
(25 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
  
<pre style="width:70%">
 
In the mid-forties G.A.~Gamov proposed the idea
 
of the "hot" origin of the World. Therefore thermodynamics
 
was introduced into cosmology, and nuclear physics too.
 
Before him the science of the evolution of Universe
 
contained only dynamics and geometry of the World.
 
                                          A.D.Chernin.
 
</pre>
 
  
  
  
 +
<p align="right">
 +
''In the mid-forties G.A. Gamov proposed the idea''<br/>
 +
''of the "hot" origin of the World. Therefore thermodynamics''<br/>
 +
''was introduced into cosmology, and nuclear physics too.'' <br/>
 +
''Before him the science of the evolution of Universe'' <br/>
 +
''contained only dynamics and geometry of the World.''<br/>
 +
''A.D.Chernin.''</p>
  
  
 +
 +
 +
<div id="tab:ter_sm">
 
{| cellpadding="5" cellspacing="0" border="1" align="center"
 
{| cellpadding="5" cellspacing="0" border="1" align="center"
|+ |The Standard Model particles and their properties.==
+
|+ |The Standard Model particles and their properties.
 
! rowspan="2" | Particles  
 
! rowspan="2" | Particles  
 
!rowspan="2" |Mass  
 
!rowspan="2" |Mass  
Line 67: Line 69:
 
| 90
 
| 90
 
|}
 
|}
 +
</div>
  
  
 +
__NOTOC__
  
__TOC__
 
  
  
 
+
<div id="ter_1"></div>
<div id="лейбел"></div>
+
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
УСЛОВИЯ
+
Find the energy and number densities for bosons and fermions in the relativistic limit.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">
 +
The energy density equals to
 +
$$
 +
\rho  = \left\{ \begin{array}{c}
 +
                \frac{\pi^2}{30}gT^4 \quad \;  for\;bosons\\
 +
                \frac{7}{8}\frac{\pi^2}{30}gT^4 \quad  for \;fermions
 +
                \end{array}
 +
\right.
 +
$$
 +
Here $g$ equals to the number of internal degrees of freedom for the particle. For photon (with spin $S=1$) $g=2$  due to absence of longitudinal polarization for the zero-mass particles.
 +
The number density is the following:
 +
\[
 +
n = \left\{ \begin{array}{c}
 +
  \frac{\zeta (3)}{\pi ^2 }gT^3 \quad \;for\;bosons  \\
 +
  \frac{3}
 +
{4}\frac{\zeta (3)}{\pi ^2 }gT^3 \quad \;  for\;fermions
 +
\end{array}  \right.
 +
\]
 +
Here $\zeta (x)$ is the Riemann $\zeta$-function;  $\zeta (3) \approx
 +
1.202$.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">
 +
\[
 +
\frac{n_i}{n_\gamma} = \left\{
 +
\begin{gathered}
 +
  \frac{1}{2}g_i \quad  for\; bosons\\
 +
  \frac{3}{8}g_i \quad for\; fermions\\
 +
\end{gathered} 
 +
\right.;\quad
 +
\frac{\rho_i}{\rho_\gamma} = \left\{
 +
\begin{gathered}
 +
  \frac{1}{2}g_i \quad  for\; bosons\\
 +
  \frac{7}{16}g_i \quad for\; fermions\\
 +
\end{gathered}  \right.
 +
\]
 +
\[
 +
\begin{gathered}
 +
  \left(\frac{n_i }{n_\gamma},\frac{\rho_i}{\rho_\gamma} \right)_{\nu_{\mu ,e}}  = \left( \frac{3}{8},\frac{7}{16} \right);\;\;\left( \frac{n_i}{n_\gamma},
 +
\frac{\rho_i}{\rho_\gamma} \right)_{e^\pm}  = \left(
 +
\frac{3}{4},\frac{7}{8} \right);\\
 +
  \left( \frac{n_i}{n_\gamma},\frac{\rho_i}{\rho_\gamma} \right)_\pi  = \left( \frac{1}{2},\frac{1}{2} \right);\;\;\left( \frac{n_i}{n_\gamma},\frac{\rho_i}{\rho_\gamma} \right)_{n,p}  = \left( \frac{3}{4},\frac{7}{8}
 +
\right) \\
 +
\end{gathered}
 +
\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_3"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
Calculate the average energy per particle in the relativistic and non-relativistic limits.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Average energy per particle reads$\left\langle \varepsilon  \right\rangle  = \rho /n$. For $T \gg m$
 +
    \[
 +
\left\langle \varepsilon  \right\rangle  = \left\{
 +
\begin{gathered}
 +
  \frac{\pi ^2}{30\zeta (3)}T\quad \;  for\;  bosons\\
 +
  \frac{7\pi ^4}{180\zeta(3)}T\quad  for\; fermions\\
 +
\end{gathered}  \right.
 +
\]
 +
In the non-relativistic limit $(T \ll m)$ one obtains the following:
 +
\[
 +
\left\langle \varepsilon  \right\rangle  = m + \frac{3}{2}T \approx m
 +
\]</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_4"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
Find the number of internal degrees of freedom for a quark.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For quark one obtains the following:
 +
\[
 +
g = 2(\, spin) \times 3(\, particle) \times 2(\, particles + \, antiparticle) = 12
 +
\]</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_5n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
Find the entropy density for bosons end fermions with zero chemical potential.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In the considered case one gets:
 +
    \[
 +
s = \frac{\rho  + p}{T};\quad p = \frac{1}{3}\rho
 +
\]
 +
Using the results of  [[#ter_1|problem]] of the present Chapter one obtains the following:
 +
\[
 +
s = \frac{2\pi ^2}{45}g^* T^3,
 +
\]
 +
where $g^* = 1$ for bosons and $g^* = 7/8$ for fermions.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_5"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
Find the effective number of internal degrees of freedom for a mixture of relativistic bosons and fermions.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[
 +
\rho  = \sum\limits_{i = bosons} g_i \frac{\pi^2}{30} T^4 +
 +
\sum\limits_{j = fermions} \frac{7}{8}g_j\frac{\pi^2}{30}
 +
T^4 \frac{\pi^2}{30}g^* T^4,
 +
\]
 +
where $g^* $ is the effective number of degrees of freedom:
 +
\[
 +
g^*  = \sum\limits_{i = bosons} g_i + \frac{7}{8}\sum\limits_{j
 +
= fermions}g_j.
 +
\]
 +
    </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="therm5"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
Generalize the results of the previous problem for the case when some $i$-components have temperature $T_i$ different from the CMB temperature $T$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[
 +
g^*  = \sum\limits_{i = bosons}g_i \left(\frac{T_i}{T} \right)^4  + \frac{7}{8}\sum\limits_{j = fermions}g_i \left( \frac{T_j}{T}\right)^4
 +
\]      </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_6"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
Find the effective number of internal degrees of freedom for the Standard Model particles at temperature $T>1TeV$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> At temperature $1\, TeV$ all the Standard Model
 +
particles are relativistic (see [[#tab:ter_sm|table]]). Therefore
 +
\[
 +
g^*  = 28 + \frac{7}{8} \times 90 = 106.75.
 +
\]    </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_7"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9 ===
 +
Find the change of the number of internal degrees of freedom due to the quark
 +
hadronization process.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
At temperature $T \approx 0.2\,  GeV$ quarks and gluons transform into colorless hadrons (protons and neutrons). Therefore
 +
\[
 +
\Delta g = 16\,(gluons) + 12 \times 6\,(quarks) -
 +
8\,(nucleons) = 80.
 +
\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="ter_8"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 10 ===
 +
Find the relation between the energy density and temperature at
 +
$10^{10}\, K$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
Represent the expression for energy density of relativistic particles in the following form:
 +
\[
 +
\rho  = \left( \sum\limits_{i = bosons} \frac{g_i}{2}  +
 +
\sum\limits_{j = fermions} \frac{7}{16}g_j \right)\rho
 +
_\gamma.
 +
\]
 +
At the temperature under consideration the relativistic particles are presented by photons, electron, positrons and neutrinos. Therefore
 +
\[
 +
\rho  = \left( 1 + \frac{7} {4} + \frac{7}{4} \right)\rho _\gamma
 +
= \frac{9}{2}\rho _\gamma  = \frac{9}{2}\alpha T^4,
 +
\]
 +
where the radiation constant \[\alpha  =
 +
\frac{\pi^2}{15}\frac{k^4}{(\hbar c)^3} \approx 7.56 \cdot
 +
10^{-16}\frac{ J}{ m^3K^4}.\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="ter_9"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11 ===
 +
Find the ratio of the energy density at temperature $10^{10}\, K$ to that at $10^8\, K$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Unlike the case considered in the previous problem, now only photons and neutrinos remain relativistic, because $10^8 K \sim 10^{ - 2} \, MeV$, and electron mass is $0.511 \, MeV$ is considerably greater. Therefore in the case under consideration one obtains the following:
 +
\[
 +
\rho  = \left( 1 + \frac{7}{4} \right)\rho _\gamma  =
 +
\frac{11}{4}\rho _\gamma \Rightarrow
 +
  \frac{\rho\left(T_2 = 10^{10} K \right)}{\rho \left( T_1 = 10^8 K \right)} = \frac{18}
 +
{11}\left(\frac{T_2}{T_1}\right)^4\simeq1.6\cdot10^8.\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="razm40"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
Determine Fermi energy of cosmological neutrino background (CNB) (a gas).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">РЕШЕНИЕ</p>
+
     <p style="text-align: left;">For a relativistic Fermi-gas the Fermi energy reads the following
 +
$E_F  = \hbar c\left( 3\pi ^2 n \right)^{1/3} ;$ $\hbar c \simeq 197.3 \, MeV\cdot \, fm$, $n \simeq 300 \, cm^{-3}$, so
 +
$$E_F  \simeq 0.4 \times 10^{-3} \, eV.$$
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 11:05, 16 October 2012




In the mid-forties G.A. Gamov proposed the idea
of the "hot" origin of the World. Therefore thermodynamics
was introduced into cosmology, and nuclear physics too.
Before him the science of the evolution of Universe
contained only dynamics and geometry of the World.
A.D.Chernin.



The Standard Model particles and their properties.
Particles Mass Number of states $g$ (particles and anti-particles)
spin color
Photon ($\gamma$) 0 2 1 2
$W^+,W^-$ $80.4\, GeV$ 3 1 6
$Z$ $91.2\,GeV$ 3 1 3
Gluon ($g$) 0 2 8 16
Higgs boson $>114\, GeV$ 1 1 1
Bosons 28
$u,/,\bar{u}$ $3\, MeV$ 2 3 12
$d,/,\bar{d}$ $6\, MeV$ 2 3 12
$s,/,\bar{s}$ $100\,MeV$ 2 3 12
$c,/,\bar{c}$ $1.2\,GeV$ 2 3 12
$b,/,\bar{b}$ $4.2\, GeV$ 2 3 12
$t,/,\bar{t}$ $175\,GeV$ 2 3 12
$e^+,\,e^-$ $0.511\, MeV $ 2 1 4
$\mu^+,\,\mu^-$ $105.7\,MeV$ 2 1 4
$\tau^+,\,\tau^-$ $1.777\, GeV$ 2 1 4
$\nu_e,\,\bar{\nu_e}$ $<3\,eV$ 1 1 2
$\nu_\mu,\,\bar{\nu_\mu}$ $<0.19\,MeV $ 1 1 2
$\nu_\tau,\,\bar{\nu_\tau}$ $<18.2\, MeV $ 1 1 2
Fermions 90




Problem 1

Find the energy and number densities for bosons and fermions in the relativistic limit.


Problem 2

Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.


Problem 3

Calculate the average energy per particle in the relativistic and non-relativistic limits.


Problem 4

Find the number of internal degrees of freedom for a quark.


Problem 5

Find the entropy density for bosons end fermions with zero chemical potential.


Problem 6

Find the effective number of internal degrees of freedom for a mixture of relativistic bosons and fermions.


Problem 7

Generalize the results of the previous problem for the case when some $i$-components have temperature $T_i$ different from the CMB temperature $T$.


Problem 8

Find the effective number of internal degrees of freedom for the Standard Model particles at temperature $T>1TeV$.


Problem 9

Find the change of the number of internal degrees of freedom due to the quark hadronization process.


Problem 10

Find the relation between the energy density and temperature at $10^{10}\, K$.


Problem 11

Find the ratio of the energy density at temperature $10^{10}\, K$ to that at $10^8\, K$.


Problem 12

Determine Fermi energy of cosmological neutrino background (CNB) (a gas).