Difference between revisions of "Thermodynamical Properties of Elementary Particles"

From Universe in Problems
Jump to: navigation, search
(Problem 11)
Line 74: Line 74:
  
  
<div id="ter_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
 
<div id="ter_1"></div>
 
<div id="ter_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
Line 112: Line 110:
 
=== Problem 2 ===
 
=== Problem 2 ===
 
Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.
 
Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 142: Line 139:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 148: Line 146:
 
=== Problem 3 ===
 
=== Problem 3 ===
 
Calculate the average energy per particle in the relativistic and non-relativistic limits.
 
Calculate the average energy per particle in the relativistic and non-relativistic limits.
 
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">  
+
     <p style="text-align: left;">Average energy per particle reads$\left\langle \varepsilon  \right\rangle  = \rho /n$. For $T \gg m$
Average energy per particle reads$\left\langle \varepsilon  \right\rangle  = \rho /n$. For $T \gg m$
+
 
     \[
 
     \[
 
\left\langle \varepsilon  \right\rangle  = \left\{  
 
\left\langle \varepsilon  \right\rangle  = \left\{  
Line 165: Line 160:
 
\[
 
\[
 
\left\langle \varepsilon  \right\rangle  = m + \frac{3}{2}T \approx m
 
\left\langle \varepsilon  \right\rangle  = m + \frac{3}{2}T \approx m
\]
+
\]</p>
 
+
  </p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 176: Line 170:
 
=== Problem 4 ===
 
=== Problem 4 ===
 
Find the number of internal degrees of freedom for a quark.
 
Find the number of internal degrees of freedom for a quark.
 
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">For quark one obtains the following:
 
+
For quark one obtains the following:
+
 
\[
 
\[
 
g = 2(\, spin) \times 3(\, particle) \times 2(\, particles + \, antiparticle) = 12
 
g = 2(\, spin) \times 3(\, particle) \times 2(\, particles + \, antiparticle) = 12
\]
+
\]</p>
    </p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 200: Line 189:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">  
+
     <p style="text-align: left;">In the considered case one gets:
 
+
 
+
In the considered case one gets:
+
 
     \[
 
     \[
 
s = \frac{\rho  + p}{T};\quad p = \frac{1}{3}\rho
 
s = \frac{\rho  + p}{T};\quad p = \frac{1}{3}\rho
Line 211: Line 197:
 
s = \frac{2\pi ^2}{45}g^* T^3,
 
s = \frac{2\pi ^2}{45}g^* T^3,
 
\]
 
\]
where $g^* = 1$ for bosons and $g^* = 7/8$ for fermions.
+
where $g^* = 1$ for bosons and $g^* = 7/8$ for fermions.</p>
  </p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 220: Line 206:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 6 ===
 
=== Problem 6 ===
 
 
Find the effective number of internal degrees of freedom for a mixture of relativistic bosons and fermions.
 
Find the effective number of internal degrees of freedom for a mixture of relativistic bosons and fermions.
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">\[
 
+
\[
+
 
\rho  = \sum\limits_{i = bosons} g_i \frac{\pi^2}{30} T^4 +
 
\rho  = \sum\limits_{i = bosons} g_i \frac{\pi^2}{30} T^4 +
 
\sum\limits_{j = fermions} \frac{7}{8}g_j\frac{\pi^2}{30}
 
\sum\limits_{j = fermions} \frac{7}{8}g_j\frac{\pi^2}{30}
Line 241: Line 223:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 246: Line 229:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 7 ===
 
=== Problem 7 ===
 
 
Generalize the results of the previous problem for the case when some $i$-components have temperature $T_i$ different from the CMB temperature $T$.
 
Generalize the results of the previous problem for the case when some $i$-components have temperature $T_i$ different from the CMB temperature $T$.
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">\[
\[
+
 
g^*  = \sum\limits_{i = bosons}g_i \left(\frac{T_i}{T} \right)^4  + \frac{7}{8}\sum\limits_{j = fermions}g_i \left( \frac{T_j}{T}\right)^4  
 
g^*  = \sum\limits_{i = bosons}g_i \left(\frac{T_i}{T} \right)^4  + \frac{7}{8}\sum\limits_{j = fermions}g_i \left( \frac{T_j}{T}\right)^4  
 
\]      </p>
 
\]      </p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
 
<div id="ter_6"></div>
 
<div id="ter_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
 
=== Problem 8 ===
 
=== Problem 8 ===
 
Find the effective number of internal degrees of freedom for the Standard Model particles at temperature $T>1TeV$.
 
Find the effective number of internal degrees of freedom for the Standard Model particles at temperature $T>1TeV$.
 
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 277: Line 255:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
  
Line 284: Line 263:
 
Find the change of the number of internal degrees of freedom due to the quark
 
Find the change of the number of internal degrees of freedom due to the quark
 
hadronization process.
 
hadronization process.
 
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 335: Line 312:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">Unlike the case considered in the previous problem, now only photons and neutrinos remain relativistic, because $10^8 K \sim 10^{ - 2} \, MeV$, and electron mass is $0.511 \, MeV$ is considerably greater. Therefore in the case under consideration one obtains the following:
 
+
Unlike the case considered in the previous problem, now only photons and neutrinos remain relativistic, because $10^8 K \sim 10^{ - 2} \, MeV$, and electron mass is $0.511 \, MeV$ is considerably greater. Therefore in the case under consideration one obtains the following:
+
 
\[
 
\[
 
\rho  = \left( 1 + \frac{7}{4} \right)\rho _\gamma  =
 
\rho  = \left( 1 + \frac{7}{4} \right)\rho _\gamma  =
Line 350: Line 325:
 
<div id="razm40"></div>
 
<div id="razm40"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
 
=== Problem 12 ===
 
=== Problem 12 ===
 
Determine Fermi energy of cosmological neutrino background (CNB) (a gas).
 
Determine Fermi energy of cosmological neutrino background (CNB) (a gas).
Line 356: Line 330:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">
+
     <p style="text-align: left;">For a relativistic Fermi-gas the Fermi energy reads the following
 
+
For a relativistic Fermi-gas the Fermi energy reads the following
+
 
$E_F  = \hbar c\left( 3\pi ^2 n \right)^{1/3} ;$ $\hbar c \simeq 197.3 \, MeV\cdot \, fm$, $n \simeq 300 \, cm^{-3}$, so
 
$E_F  = \hbar c\left( 3\pi ^2 n \right)^{1/3} ;$ $\hbar c \simeq 197.3 \, MeV\cdot \, fm$, $n \simeq 300 \, cm^{-3}$, so
 
$$E_F  \simeq 0.4 \times 10^{-3} \, eV.$$
 
$$E_F  \simeq 0.4 \times 10^{-3} \, eV.$$

Revision as of 19:55, 1 October 2012


 In the mid-forties G.A.~Gamov proposed the idea
 of the "hot" origin of the World. Therefore thermodynamics 
 was introduced into cosmology, and nuclear physics too. 
 Before him the science of the evolution of Universe 
 contained only dynamics and geometry of the World.
                                          A.D.Chernin.



The Standard Model particles and their properties.
Particles Mass Number of states $g$ (particles and anti-particles)
spin color
Photon ($\gamma$) 0 2 1 2
$W^+,W^-$ $80.4\, GeV$ 3 1 6
$Z$ $91.2\,GeV$ 3 1 3
Gluon ($g$) 0 2 8 16
Higgs boson $>114\, GeV$ 1 1 1
Bosons 28
$u,/,\bar{u}$ $3\, MeV$ 2 3 12
$d,/,\bar{d}$ $6\, MeV$ 2 3 12
$s,/,\bar{s}$ $100\,MeV$ 2 3 12
$c,/,\bar{c}$ $1.2\,GeV$ 2 3 12
$b,/,\bar{b}$ $4.2\, GeV$ 2 3 12
$t,/,\bar{t}$ $175\,GeV$ 2 3 12
$e^+,\,e^-$ $0.511\, MeV $ 2 1 4
$\mu^+,\,\mu^-$ $105.7\,MeV$ 2 1 4
$\tau^+,\,\tau^-$ $1.777\, GeV$ 2 1 4
$\nu_e,\,\bar{\nu_e}$ $<3\,eV$ 1 1 2
$\nu_\mu,\,\bar{\nu_\mu}$ $<0.19\,MeV $ 1 1 2
$\nu_\tau,\,\bar{\nu_\tau}$ $<18.2\, MeV $ 1 1 2
Fermions 90



Problem 1

Find the energy and number densities for bosons and fermions in the relativistic limit.


Problem 2

Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.


Problem 3

Calculate the average energy per particle in the relativistic and non-relativistic limits.


Problem 4

Find the number of internal degrees of freedom for a quark.


Problem 5

Find the entropy density for bosons end fermions with zero chemical potential.


Problem 6

Find the effective number of internal degrees of freedom for a mixture of relativistic bosons and fermions.


Problem 7

Generalize the results of the previous problem for the case when some $i$-components have temperature $T_i$ different from the CMB temperature $T$.


Problem 8

Find the effective number of internal degrees of freedom for the Standard Model particles at temperature $T>1TeV$.


Problem 9

Find the change of the number of internal degrees of freedom due to the quark hadronization process.


Problem 10

Find the relation between the energy density and temperature at $10^{10}\, K$.


Problem 11

Find the ratio of the energy density at temperature $10^{10}\, K$ to that at $10^8\, K$.


Problem 12

Determine Fermi energy of cosmological neutrino background (CNB) (a gas).