Difference between revisions of "Thermodynamics of Black-Body Radiation"

From Universe in Problems
Jump to: navigation, search
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
[[Category:Cosmic Microwave Background (CMB)|1]]
 
[[Category:Cosmic Microwave Background (CMB)|1]]
 
+
__TOC__
 
+
__NOTOC__
+
  
 
<div id="bbrazm1"></div>
 
<div id="bbrazm1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 1: chemical potential ===
 
Show that the photon gas in thermal equilibrium has zero chemical potential.
 
Show that the photon gas in thermal equilibrium has zero chemical potential.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 16: Line 14:
  
  
Now let us consider in the next 4 problems some volume $V$, filled with black-body radiation of temperature $T$.
+
In the next 4 problems we consider some volume $V$, filled with black-body radiation of temperature $T$.
  
 
<div id="bbrazm2"></div>
 
<div id="bbrazm2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
=== Problem 2: number density distribution ===
 
Find the number of photons with frequencies in the interval $[\omega ,\omega +d\omega]$.
 
Find the number of photons with frequencies in the interval $[\omega ,\omega +d\omega]$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 28: Line 26:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 34: Line 31:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 3 ===
+
=== Problem 3: total number ===
 
Find the total number of photons.
 
Find the total number of photons.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 42: Line 39:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 48: Line 44:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 4 ===
+
=== Problem 4: gas oven ===
 
What is this number for a gas oven at room temperature and at maximum heat?
 
What is this number for a gas oven at room temperature and at maximum heat?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 62: Line 58:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 5 ===
+
=== Problem 5: energy distribution ===
 
What is the energy of photons with frequencies in the interval $[ \omega ,\omega +d\omega]$?
 
What is the energy of photons with frequencies in the interval $[ \omega ,\omega +d\omega]$?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 75: Line 71:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 6 ===
+
=== Problem 6: thermodynamic potentials ===
 
Calculate the free energy, entropy and total energy of black-body radiation.
 
Calculate the free energy, entropy and total energy of black-body radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 87: Line 83:
 
<div id="bbrazm6"></div>
 
<div id="bbrazm6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7 ===
+
=== Problem 7: thermal capacity ===
 
Calculate the thermal capacity of black-body radiation.
 
Calculate the thermal capacity of black-body radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 99: Line 95:
 
<div id="bbrazm7"></div>
 
<div id="bbrazm7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
=== Problem 8: pressure ===
 
Find the pressure of black-body radiation and construct its state equation.
 
Find the pressure of black-body radiation and construct its state equation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 111: Line 107:
 
<div id="bbrazm8"></div>
 
<div id="bbrazm8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9 ===
+
=== Problem 9: adiabatic equation ===
 
Find the adiabatic equation for the black-body radiation.
 
Find the adiabatic equation for the black-body radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 123: Line 119:
 
<div id="cmb3"></div>
 
<div id="cmb3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10 ===
+
=== Problem 10: CMB as microwave ===
 
Why CMB cannot be used to warm up food like in the microwave oven?
 
Why CMB cannot be used to warm up food like in the microwave oven?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 136: Line 132:
 
<div id="cmb6"></div>
 
<div id="cmb6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11 ===
+
=== Problem 11: Planck distribution ===
 
The binding energy of electron in the hydrogen atom equals to $13.6\
 
The binding energy of electron in the hydrogen atom equals to $13.6\
 
eV$. What is the temperature of the Planck distribution with this
 
eV$. What is the temperature of the Planck distribution with this
Line 145: Line 141:
 
     <p style="text-align: left;">The Planck distribution has maximum at frequency $\omega_m = 2.822 kT/\hbar.$ Then one obtains
 
     <p style="text-align: left;">The Planck distribution has maximum at frequency $\omega_m = 2.822 kT/\hbar.$ Then one obtains
 
$ kT = 13.6/2.822 = 4.82\mbox{eV}$ and $T\approx 5.6 \cdot {10^4}\mbox{K}$.</p>
 
$ kT = 13.6/2.822 = 4.82\mbox{eV}$ and $T\approx 5.6 \cdot {10^4}\mbox{K}$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb600"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12: power-law ===
 +
Find in power-law cosmology (see Chapter 3) time dependence of the CMB temperature $T(t)$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In power-law cosmology the scale factor $a(t)$and the CMB temperature $T(t)$ are related through the relation
 +
 +
\[\frac{T_{0} }{T} =\frac{a}{a_{0} } =\left(\frac{t}{t_{0} } \right)^{\alpha } =\left(\frac{t}{t_{0} } \right)^{1/1+q} \]
 +
 +
where $q$is the deceleration parameter. Consequently,
 +
 +
\[T(t)=T_{0} \left(\frac{t}{t_{0} } \right)^{-\alpha } =T_{0} \left(\frac{t}{t_{0} } \right)^{-1/1+q} \]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Latest revision as of 23:18, 8 January 2013

Problem 1: chemical potential

Show that the photon gas in thermal equilibrium has zero chemical potential.


In the next 4 problems we consider some volume $V$, filled with black-body radiation of temperature $T$.

Problem 2: number density distribution

Find the number of photons with frequencies in the interval $[\omega ,\omega +d\omega]$.


Problem 3: total number

Find the total number of photons.


Problem 4: gas oven

What is this number for a gas oven at room temperature and at maximum heat?


Problem 5: energy distribution

What is the energy of photons with frequencies in the interval $[ \omega ,\omega +d\omega]$?


Problem 6: thermodynamic potentials

Calculate the free energy, entropy and total energy of black-body radiation.


Problem 7: thermal capacity

Calculate the thermal capacity of black-body radiation.


Problem 8: pressure

Find the pressure of black-body radiation and construct its state equation.


Problem 9: adiabatic equation

Find the adiabatic equation for the black-body radiation.


Problem 10: CMB as microwave

Why CMB cannot be used to warm up food like in the microwave oven?


Problem 11: Planck distribution

The binding energy of electron in the hydrogen atom equals to $13.6\ eV$. What is the temperature of the Planck distribution with this average photon energy?


Problem 12: power-law

Find in power-law cosmology (see Chapter 3) time dependence of the CMB temperature $T(t)$.