Difference between revisions of "Thermodynamics of Non-Relativistic Gas"

From Universe in Problems
Jump to: navigation, search
(Problem 3)
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
[[Category:Thermodynamics of Universe|2]]
 
[[Category:Thermodynamics of Universe|2]]
 +
 +
 +
__NOTOC__
 +
 +
 +
<div id="therm26"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the ratio of thermal capacities of matter in the form of monatomic gas and radiation.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 +
$$\frac{c_m}{c_\gamma}=\frac{1.5nk}{4\alpha T^3},$$
 +
where $n$ is the concentration of the atoms.
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="therm27"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
Expansion of the Universe tends to violate thermal equilibrium
 +
between the radiation ($T\propto a^{-1}$) and gas of
 +
non-relativistic particles ($T\propto a^{-2}$). Which of these two
 +
components determines the temperature of the Universe?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 +
It is the radiation. Temperature of the matter relaxes to that of radiation, because the latter has much greater thermal capacity.
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="therm28"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
Show that in the non-relativistic limit ($kT\ll mc^2$) $p\ll\rho$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 +
Consider for example the case of non-relativistic gas. Then $p = nkT,\;\rho  = mn,$ and therefore
 +
$$
 +
p = \frac{kT}{m}\rho  \ll 1.
 +
$$
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="ter_n_19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 4 ===
 +
Show that for a system of particles in thermal equilibrium the following holds
 +
\[\frac{dp}{dT}=\frac1T(\rho+p).\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 +
Entropy of the system of particles in thermal equilibrium is the function $S=S(V,T)$ such that
 +
\[dS=\frac1T(dE+pdV)=\frac1T[d(\rho V)+pdV]=\frac1T\left[V\frac{d\rho}{dT}dT+(p+\rho)dV\right].\]
 +
Then \[\frac{\partial S}{\partial V}=\frac1T(\rho+p),\ \frac{\partial S}{\partial V}=\frac{\partial S}{\partial T}=\frac{V}{T}\frac{d\rho}{dT}.\]
 +
The above given derivatives must satisfy the condition
 +
\[\frac{\partial}{\partial T}\left[\frac1T(\rho+p)\right]=\frac{\partial}{\partial V}\left(\frac{V}{T}\frac{d\rho}{dT}.\right)\]
 +
Finally one obtains
 +
\[\frac{dp}{dT}=\frac1T(\rho+p).\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="ter_n_20"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
Show that for a substance with the equation of state $p=w\rho$ the following holds
 +
\[T\propto\rho^{\frac{w}{w+1}}.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 +
\[\frac{dp}{dT}=\frac1T(\rho+p)\Rightarrow\frac{d\rho}{d T}=\frac{1+w}{w}\frac\rho T,\]
 +
\[\frac{w}{1+w}\frac{d\rho}{\rho}=\frac{dT}{T}\Rightarrow T\propto\rho^{\frac{w}{w+1}}.\]
 +
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="ter_n_21"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
Show that for a substance with the equation of state $p=w\rho$ the following holds $T\propto a^{-3w}.$
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
\[T\propto\rho^{\frac{w}{w+1}},\ \rho\propto a^{-3(1+w)}\Rightarrow T\propto a^{-3w}.\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="ter_n_22"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
Obtain a generalization of Stefan-Boltzmann law for cosmological fluid, described by generalized polytropic equation of state $p=w\rho+k\rho^{1+1/n},$ assuming that $1+w+k\rho^{1/n}>0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
For the polytropic equation of state the thermodynamical equation
 +
\[\frac{dp}{dT}=\frac1T(\rho+p)\]
 +
becomes
 +
\[(w+k(1+1/n)\rho^{1/n})\frac{d\rho}{dT}=\frac1T(w+1+k\rho^{1/n})\rho.\]
 +
This equation can be integrated into
 +
\[T=T_*\left[1\pm(\rho/\rho_*)^{1/n}\right](w+n+1)/(w+1)(\rho/\rho_*)^{w/(w+1)},\]
 +
where $T_*$ is constants of integration and $\rho_*\equiv[(1+w)/|k|]^n$ [see P-H. Chavanis, arXiv:1208.0797], the upper sign corresponds to $k>0$, and the lower sign corresponds to $k<0$. This relation can be viewed as a generalization of Stefan-Boltzmann law.
 +
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="ter_n_22_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
Show that the velocity of sound for cosmological fluid described by generalized polytropic equation of state \(p=w\rho+k\rho^{1+1/n}\), where $1+w+k\rho^{1/n}>0$, vanishes at the point where the temperature is extremum.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
For the generalized polytropic equation of state  the velocity of sound is given by
 +
\[c_s^2=\frac{d p}{d\rho}=w\pm(w+1)\frac{n+1}{n}\left(\frac\rho{\rho_*}\right)^{1/n},\]
 +
\[\rho_*\equiv\left[\frac{w+1}{|k|}\right]^n.\]
 +
The upper sign corresponds to $k>0$, and the lower sign corresponds to $k<0$. As we have seen in the previous problem
 +
\[T=T_*\left[1\pm(\rho/\rho_*)^{1/n}\right](w+n+1)/(w+1)(\rho/\rho_*)^{w/(w+1)}.\]
 +
The extremum of temperature (when it exists) is located at
 +
\[\rho_e=\rho_*\left[\mp\frac{wn}{(w+1)(n+1)}\right]^n.\]
 +
It is easy to see that the velocity of sound vanishes at the point where the temperature is extremum.
 +
 +
</p>
 +
  </div>
 +
</div></div>

Latest revision as of 10:08, 1 November 2012




Problem 1

Find the ratio of thermal capacities of matter in the form of monatomic gas and radiation.


Problem 2

Expansion of the Universe tends to violate thermal equilibrium between the radiation ($T\propto a^{-1}$) and gas of non-relativistic particles ($T\propto a^{-2}$). Which of these two components determines the temperature of the Universe?


Problem 3

Show that in the non-relativistic limit ($kT\ll mc^2$) $p\ll\rho$.


Problem 4

Show that for a system of particles in thermal equilibrium the following holds \[\frac{dp}{dT}=\frac1T(\rho+p).\]


Problem 5

Show that for a substance with the equation of state $p=w\rho$ the following holds \[T\propto\rho^{\frac{w}{w+1}}.\]


Problem 6

Show that for a substance with the equation of state $p=w\rho$ the following holds $T\propto a^{-3w}.$


Problem 7

Obtain a generalization of Stefan-Boltzmann law for cosmological fluid, described by generalized polytropic equation of state $p=w\rho+k\rho^{1+1/n},$ assuming that $1+w+k\rho^{1/n}>0$.


Problem 8

Show that the velocity of sound for cosmological fluid described by generalized polytropic equation of state \(p=w\rho+k\rho^{1+1/n}\), where $1+w+k\rho^{1/n}>0$, vanishes at the point where the temperature is extremum.