Difference between revisions of "Time-dependent Cosmological Constant"

From Universe in Problems
Jump to: navigation, search
(Created page with "3")
 
Line 1: Line 1:
 
[[Category:Dark Energy|3]]
 
[[Category:Dark Energy|3]]
 +
 +
__NOTOC__
 +
 +
 +
'''''(Inspired by I.Shapiro,J.Sola, H.Stefancic, [http://arxiv.org/abs/hep-ph/0410095 hep-ph/0410095])'''''
 +
 +
 +
 +
 +
<div id="DE19"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Obtain the analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case when the gravitation constant $G$ and the cosmological "constant" $\Lambda$ depend on time.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[R_{\mu\nu}-\frac12Rg_{\mu\nu}
 +
=8\pi G\tilde{T}_{\mu\nu}, \quad
 +
\tilde{T}_{\mu\nu}\equiv T_{\mu\nu}
 +
+\rho_\Lambda g_{\mu\nu},\quad
 +
\rho_\Lambda=\frac{\Lambda}{8\pi G}.\]
 +
Here $T_{\mu\nu}$ is the ordinary energy-momentum tensor associated with isotropic matter and radiation, and $\rho_\Lambda$ represents the vacuum energy density. Then the Bianchi identities imply that $\nabla^\mu(G\tilde{T}_{\mu\nu})=0$ and with the help of the FLRW metric a straightforward calculation yields
 +
\[\frac{d}{dt}\left[G(\rho_\Lambda+\rho)\right]
 +
+3GH(\rho+p)=0.\]
 +
The simplest possible case is when both $G$ and $\Lambda$ are constants. In this case we revert to the conservation equation its original form
 +
\[\dot\rho+3H(\rho+p)=0.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE20"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that when $G$ is constant, $\Lambda$ is also a constant if and only if the ordinary energy-momentum tensor $T_{\mu\nu}$ is also conserved.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">If $G=const$,
 +
\[\frac{d}{dt}\left[G(\rho_\Lambda+\rho)\right]
 +
+3GH(\rho+p)=\dot\rho_\Lambda+\dot\rho
 +
+3H(\rho+p)=0.\]
 +
If the ordinary energy-momentum tensor is separately conserved
 +
\[\nabla^\mu T_{\mu\nu}=0\quad
 +
\Rightarrow\quad\dot\rho+3H(\rho+p)=0.\]
 +
Consequently,
 +
\[\dot\rho_\Lambda=0\quad
 +
\Rightarrow\quad \Lambda=const.\]
 +
The first non-trivial situation appears when $\Lambda=\Lambda(t)$ but $G$ is still constant. This possibility will be discussed bellow.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE21"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that in case the cosmological constant depends on time, the energy density related to the latter can be converted into matter.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Conservation equation for the case of Universe composed by matter and dark energy takes the form
 +
\[\dot \rho _{tot}  + 3H(\rho _{tot}  + p_{tot} ) = 0; \] where $p_m  =0$ and $p_\Lambda  =  - \rho _\Lambda$. Assuming that $\dot\rho _\Lambda  \ne 0$, one obtains
 +
\[\dot \rho _m  + 3H\rho _m
 +
=  - \dot \rho _\Lambda.\]
 +
Under assumption that the cosmological constant decays, i.e. $\dot \rho _\Lambda  < 0$, one can see from this equation that the cosmological constant can be converted into matter.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE22"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Derive the time dependence of the scale factor for a flat Universe with the $\Lambda$--dynamical constant $\Lambda=\Lambda_0(1+\alpha t)$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\left(\frac{\dot a}{a}\right)^2=\frac\Lambda3=\frac{\Lambda_0}{3}(1+\alpha t);\]
 +
\[\ln a=\frac{2}{3\alpha}\sqrt{\frac{\Lambda_0}{3}}(1+\alpha t)^{3/2}+C;\]
 +
$$
 +
a = a(t=0)\exp \left\{ {{2 \over {3\alpha }}\sqrt {{{\Lambda _0 } \over
 +
3}} \left[ {\left( {1 + \alpha t} \right)^{3/2}  - 1} \right]}
 +
\right\}.$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE23"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Construct the dynamics of the Universe in the cosmological model with $\Lambda=\sigma H ,\; \sigma>0.$
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Friedman equations for the considered model take the following form (see problem \ref{DE21}):
 +
\[\dot \rho _m  + 3H\rho _m  =  - \dot \rho_\Lambda k^2;\]
 +
\[\frac{3H^2 }  {k^2 } = \rho _m  + \rho_\Lambda k^2,\]
 +
where $k^2=8\pi G$.
 +
<br/>
 +
From these equations one finds that
 +
\[\rho _m  =  -{2\dot H}/{k^2},\]
 +
and substitution into
 +
\[{3H^2 } / {k^2 } = \rho _m  + \rho_\Lambda k^2\] yields the equation governing the evolution of the Universe
 +
\[{3H^2 } + {2\dot H} - \sigma H = 0.\]
 +
Its solution reads
 +
\[a = C\left[
 +
{\exp \left( {\sigma t/2} \right) - 1} \right]^{2/3}.\]
 +
Scale factor dependencies for the energy densities are
 +
\[\rho _m  = {\frac{\sigma ^2 C^3 }{3a^3 }}
 +
+ \frac{\sigma ^2 C^{3/2} }{3a^{3/2} };\]
 +
\[\rho_\Lambda
 +
= \frac{1}{k^2}\left(\frac{\sigma ^2 }  3
 +
+ \frac{\sigma ^2 C^{3/2} }  {3a^{3/2} }\right).\]
 +
Time dependence of the Hubble parameter is
 +
\[H =\frac {\sigma /3}  {1
 +
- \exp \left( { - \sigma t/2} \right)}.\]
 +
Finally,
 +
\[H(z) = H_0 \left[ {1 - \Omega _{m0}
 +
+ \Omega _{m0} \left( {z + 1} \right)^{3/2} } \right],\]
 +
where
 +
$\Omega _{m0}  = \rho _{m0} 8 \pi G /\left( {3H_0^2 } \right)$ is current value of relative density of matter.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="DE24_0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Construct the dynamics of the Universe in the cosmological model with $\Lambda(H)=\sigma H +3\beta H^2$ and $\rho=\rho_\Lambda+\rho_m$.
 +
<!--<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>--></div>

Revision as of 18:14, 2 December 2012



(Inspired by I.Shapiro,J.Sola, H.Stefancic, hep-ph/0410095)



Problem 1

Obtain the analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case when the gravitation constant $G$ and the cosmological "constant" $\Lambda$ depend on time.


Problem 1

Show that when $G$ is constant, $\Lambda$ is also a constant if and only if the ordinary energy-momentum tensor $T_{\mu\nu}$ is also conserved.


Problem 1

Show that in case the cosmological constant depends on time, the energy density related to the latter can be converted into matter.


Problem 1

Derive the time dependence of the scale factor for a flat Universe with the $\Lambda$--dynamical constant $\Lambda=\Lambda_0(1+\alpha t)$.


Problem 1

Construct the dynamics of the Universe in the cosmological model with $\Lambda=\sigma H ,\; \sigma>0.$


Problem 1

Construct the dynamics of the Universe in the cosmological model with $\Lambda(H)=\sigma H +3\beta H^2$ and $\rho=\rho_\Lambda+\rho_m$.