Difference between revisions of "Single Scalar Cosmology"

From Universe in Problems
Jump to: navigation, search
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:Dark Energy|7]]
 
[[Category:Dark Energy|7]]
  
__NOTOC__
+
__TOC__
  
  
Line 21: Line 21:
 
----
 
----
  
 +
----
 
<div id="SSC_0"></div>
 
<div id="SSC_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_0</p>
 
Show that the Hubble parameter cannot increase with time in the single scalar cosmology.
 
Show that the Hubble parameter cannot increase with time in the single scalar cosmology.
Line 51: Line 52:
 
\]
 
\]
 
Thus the Hubble parameter is a semi-monotonically decreasing function of time.</p>
 
Thus the Hubble parameter is a semi-monotonically decreasing function of time.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_00"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 2'''
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_00</p>
 +
Show that if the Universe is filled by a substance which satisfies the null energy condition then the Hubble parameter is a semi-monotonically decreasing function of time.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\dot H=-\frac12(\rho+p).\]
 +
If $\rho+p\ge0$ (null energy condition), $H$ is a semi-monotonically decreasing function of time.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_0_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 3'''
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_0_1</p>
 +
For  single-field scalar models express the scalar field potential in terms of the Hubble parameter and its derivative with respect to the scalar field.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For single-field models in which the scalar field is a single-valued function of time in some interval, it is possible to reparametrize the Hubble parameter in terms of $\varphi$:
 +
\[H(t)=H[\varphi(t)]\]
 +
Replacing the time derivatives $\dot{\varphi} = - 2 H'$ (see the problem \ref{SSC_0}) in the Friedmann equation we find
 +
\[V=3H^2-2H'^2.\]
 +
The latter expression can be used to reconstruct the potential if the evolution history $H[\varphi(t)]$ is known, or for given $V(\varphi)$ this is a first-order differential equation for $H[\varphi(t)]$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 57: Line 89:
 
<div id="SSC_1"></div>
 
<div id="SSC_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
 
 +
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_1</p>
 
Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.
 
Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.
Line 83: Line 116:
 
<div id="SSC_2"></div>
 
<div id="SSC_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_2</p>
 
Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.
 
Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.
Line 112: Line 145:
 
<div id="SSC_3"></div>
 
<div id="SSC_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4 ===
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_3</p>
 
Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.
 
Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.
Line 128: Line 161:
 
<div id="SSC_4"></div>
 
<div id="SSC_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5 ===
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_4</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_4</p>
 
Obtain explicit time dependence for the scale factor in the model of problem [[#SSC_2]].
 
Obtain explicit time dependence for the scale factor in the model of problem [[#SSC_2]].
Line 146: Line 179:
 
<div id="SSC_5"></div>
 
<div id="SSC_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6 ===
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_5</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_5</p>
 
Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem [[#SSC_2]].
 
Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem [[#SSC_2]].
Line 167: Line 200:
 
<div id="SSC_6_00"></div>
 
<div id="SSC_6_00"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7 ===
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_00</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_00</p>
 
Describe possible final states for the Universe governed by
 
Describe possible final states for the Universe governed by
Line 181: Line 214:
 
<div id="SSC_6_0"></div>
 
<div id="SSC_6_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_0</p>
 
Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.
 
Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.
Line 210: Line 243:
 
<div id="SSC_6_1"></div>
 
<div id="SSC_6_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9 ===
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_1</p>
 
Consider a single scalar cosmology described by the quadratic potential
 
Consider a single scalar cosmology described by the quadratic potential
Line 247: Line 280:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 10 ===
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_7</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_7</p>
 
Obtain actual solutions for the model of previous problem using the power series expansion
 
Obtain actual solutions for the model of previous problem using the power series expansion
Line 274: Line 307:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 11 ===
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_8</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_8</p>
 
Estimate main contribution to total expansion factor of the Universe.
 
Estimate main contribution to total expansion factor of the Universe.
Line 302: Line 335:
 
<div id="SSC_9_0"></div>
 
<div id="SSC_9_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12 ===
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9_0</p>
 
Explain difference between end points and turning points of the scalar field evolution.
 
Explain difference between end points and turning points of the scalar field evolution.
Line 319: Line 352:
 
<div id="SSC_9"></div>
 
<div id="SSC_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13 ===
+
'''Problem 15'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9</p>
 
Show that the exponentially decaying scalar field
 
Show that the exponentially decaying scalar field
Line 355: Line 388:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 14 ===
+
'''Problem 16'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_10</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_10</p>
 
Analyze all possible final states in the model of previous problem.
 
Analyze all possible final states in the model of previous problem.
Line 383: Line 416:
 
<div id="SSC_11"></div>
 
<div id="SSC_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15 ===
+
'''Problem 17'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_11</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_11</p>
 
Express initial energy density of the model of problem [[#SSC_9]] in terms of the $e$-folding number $N$.
 
Express initial energy density of the model of problem [[#SSC_9]] in terms of the $e$-folding number $N$.
Line 414: Line 447:
 
<div id="SSC_12"></div>
 
<div id="SSC_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
+
'''Problem 18'''
=== Problem 16 ===
+
 
<p style= "color: #999;font-size: 11px">problem id: SSC_12</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_12</p>
 
Estimate mass of the particles corresponding to the exponential scalar field considered in problem [[#SSC_9]].
 
Estimate mass of the particles corresponding to the exponential scalar field considered in problem [[#SSC_9]].
Line 460: Line 492:
 
<div id="SSC_13"></div>
 
<div id="SSC_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
+
'''Problem 19'''
=== Problem 17 ===
+
 
<p style= "color: #999;font-size: 11px">problem id: SSC_13</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_13</p>
 
Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.
 
Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.
Line 477: Line 508:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
 +
 +
<div id="SSC_14_"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 20'''
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_14_</p>
 +
When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo  and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">By substituting the Hubble function
 +
\[H^2=\frac13\left(\frac12\dot\varphi^2+V(\varphi)\right)\]
 +
into the Klein-Gordon equation we obtain
 +
\[\ddot\varphi+\sqrt3\sqrt{\frac12\dot\varphi^2+V(\varphi)}\dot\varphi + \frac{dV}{d\varphi}=0\]
 +
Introducing $\dot\varphi=\sqrt{f(\varphi)}$ and changing the independent variable from $t$ to $\varphi$, transform last equation into
 +
\[\frac12\frac{df(\varphi)}{d\varphi}+\sqrt3\sqrt{\frac12f(\varphi+V(\varphi)}\sqrt{f(\varphi)}+\frac{dV}{d\varphi}=0.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
==Exact Solutions for the Single Scalar Cosmology==
 +
 +
after Harko (arXiv:1310.7167v4)
 +
 +
 +
<div id="ES_0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 21 ===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_0</p>
 +
Rewrite the equations of the single scalar cosmology
 +
\begin{equation}
 +
3H^{2} =\rho _{\phi }=\frac{\dot{\phi}^{2}}{2}+V\left( \phi \right) ,
 +
\label{H}
 +
\end{equation}
 +
\begin{equation}
 +
2\dot{H}+3H^{2}=-p_{\phi }=-\frac{\dot{\phi}^{2}}{2}+V\left( \phi \right),
 +
\label{H1}
 +
\end{equation}
 +
\begin{equation}
 +
\ddot{\phi}+3H\dot{\phi}+V^{\prime }\left( \phi \right) = 0,  \label{phi}
 +
\end{equation}
 +
in terms of the parameter $G(\phi)$ introduced as
 +
\[\dot\phi^2=2V(\phi)\sinh^2 G(\phi).\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
\frac{dG}{d\phi }+\frac{1}{2V}\frac{dV}{d\phi }\coth G+\sqrt{\frac{3}{2}}=0.
 +
\label{fin}
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 22 ===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_1</p>
 +
Obtain equation to determine the parameter $G$ as function of time.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
\frac{dG}{dt}=-\sqrt{2V\left( \phi \right) }\sinh G\left[ \sqrt{\frac{3}{2}}+%
 +
\frac{1}{2V\left( \phi \right) }\frac{dV}{d\phi }\coth G\right] .
 +
\label{time}
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 23===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_2</p>
 +
Obtain equation to determine the parameter $G$ as function of scale factor.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
\frac{1}{a}\frac{da}{dG}=-\frac{1}{\sqrt{6}}\frac{\coth G}{\sqrt{\frac{3}{2}}%
 +
+\frac{1}{2V}\frac{dV}{d\phi }\coth G}.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_3"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 24===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_3</p>
 +
Obtain the deceleration parameter $q$ in terms of the parameter $G$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
q(\phi )=3\tanh ^{2}G(\phi )-1.  \label{bb}
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_4"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 25===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_4</p>
 +
Obtain solution of the equation (\ref{fin}) with
 +
\begin{equation}
 +
V=V_{0}\exp \left( \sqrt{6}\alpha _{0}\phi \right).  \label{pp}
 +
\end{equation}
 +
in the case $\alpha _0\neq \pm 1$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
\sqrt{\frac{3}{2}}\left[ \phi (G)-\phi _{0}\right] =\frac{G-\alpha _{0}\ln
 +
\left| \sinh G+\alpha _{0}\cosh G\right| }{\alpha _{0}^{2}-1}\,,
 +
\label{expphi}
 +
\end{equation}
 +
\begin{equation}
 +
t(G)-t_{0}=-\frac{1}{\sqrt{3V_{0}}}\int {\frac{dG}{e^{\sqrt{3/2}\alpha
 +
_{0}\phi }\left( \sinh G+\alpha _{0}\cosh G\right) }}.  \label{exp1b}
 +
\end{equation}
 +
\begin{equation}
 +
a(G)=a_{0}e^{\left[ \alpha _{0}/3\left( 1-\alpha _{0}^{2}\right) \right]
 +
G}\left( \sinh G+\alpha _{0}\cosh G\right) ^{1/3\left( \alpha
 +
_{0}^{2}-1\right) }.
 +
\end{equation}
 +
 +
[[File:exp1.jpg|center|thumb|400px|]]
 +
[[File:exp2.jpg|center|thumb|400px|Depicted is the time variation of the scale factor (in arbitrary units), in the first plot, and the time variation of the cosmological  scalar field, in the second plot,  with an exponential  potential for different values of $\alpha _0$: $\alpha _0=1.5 $ (solid curve), $\alpha _0=2.5$ (dotted curve), $\alpha _0=3.5$ (short dashed curve), $\alpha _0=4.5$ (dashed curve), and $\alpha _0=5.5$ (long dashed curve), respectively. The arbitrary integration constants $\phi _0$ and $V_0$ have been normalized so that $\exp \left(-\sqrt{3/2}\alpha _0\phi _0\right)=\sqrt{3V_0}$.]]
 +
 +
<br/>
 +
----
 +
<br/>
 +
 +
[[File:exp3.jpg|center|thumb|400px|]]
 +
[[File:exp4.jpg|center|thumb|400px|Plots of the time variation of the exponential  scalar field potential, depicted in the fist figure, and the time variation of the deceleration parameter of the Universe filled with an exponential potential scalar field, depicted in the second figure,  for different values of $\alpha _0$: $\alpha _0=1.5 $ (solid curve), $\alpha _0=2.5$ (dotted curve), $\alpha _0=3.5$ (short dashed curve), $\alpha _0=4.5$ (dashed curve), and $\alpha _0=5.5$ (long dashed curve), respectively. The arbitrary integration constants $\phi _0$ and $V_0$ have been normalized so that $\exp \left(-\sqrt{3/2}\alpha _0\phi _0\right)=\sqrt{3V_0}$.]]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_5"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 26===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_5</p>
 +
Obtain explicit solution of the problem [[#ES_4]] in the case $\alpha _{0}=\pm \sqrt{2}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
t_{\pm }(G)-t_{0}^{\pm }=-\frac{e^{\mp \left( \sqrt{2}G+\sqrt{3}\phi
 +
_{0}\right) }}{\sqrt{3V_{0}}}\left[ 3\cosh G\pm 2\sqrt{2}\sinh G\right] .
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_6"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 27===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_6</p>
 +
Obtain explicit solution of the problem [[#ES_4]]
 +
in the case $\alpha _{0}=\pm \sqrt{3/2}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{eqnarray}
 +
t_{\pm }(G)-t_{0}^{\pm }=\pm \frac{1}{24\sqrt{V_{0}}}\mathbf{e}^{\mp \left(
 +
\sqrt{6}G+\frac{3\phi _{0}}{2}\right) } \times
 +
  \nonumber\\
 +
\times \left[ \sqrt{2}+ 27\sqrt{2}\cosh
 +
(2G)\pm 22\sqrt{3}\sinh (2G)\right]
 +
\end{eqnarray}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_7"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 28===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_7</p>
 +
Obtain explicit solution of the problem [[#ES_4]]
 +
in the case $\alpha _{0}=\pm 2/\sqrt{3}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{eqnarray}
 +
t_{\pm }(G)-t_{0}^{\pm } =\frac{1}{396\sqrt{3V_{0}}}e^{\mp \left( 2\sqrt{3}
 +
G+\sqrt{2}\phi _{0}\right) }\Big\{ 45\cosh G\nonumber\\
 +
+1067\cosh (3G)\pm 8\sqrt{3}
 +
\left[ 3\sinh G+77\sinh (3G)\right] \Big\} .
 +
\end{eqnarray}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_8"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 29===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_8</p>
 +
Obtain a particular solution of the problem [[#ES_4]]
 +
in the case $G(\phi)=G_{0}=\mathrm{constant}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
G_{0}=\mathrm{arccoth}\left( -\frac{1}{\alpha _{0}}\right) =\frac{1}{2}\ln
 +
\left| \frac{1-\alpha _{0}}{1+\alpha _{0}}\right| , 0<|\alpha_0|<1.
 +
\end{equation}
 +
\begin{equation}
 +
a(t)=a_{0}\left[ \pm \sqrt{3V_{0}}\alpha _{0}\sinh \left( G_{0}\right)
 +
\left( t_0-t\right)
 +
\right] ^{\frac{1}{3\alpha _{0}^{2}}}.
 +
\end{equation}
 +
\begin{equation}
 +
e^{-\sqrt{3/2}\alpha _{0}\phi(t) }=\pm \sqrt{3V_{0}}\alpha _{0}\sinh \left(
 +
G_{0}\right) \left( t_{0}-t\right) ,
 +
\end{equation}
 +
where $t_{0}$ is an arbitrary integration constant.
 +
\begin{eqnarray}\label{potsimpl}
 +
V(t)&=&\frac{V_{0}}{3V_{0}\alpha _{0}^{2}\sinh ^{2}\left( G_{0}\right) }\frac{1
 +
}{\left( t-t_{0}\right) ^{2}}\nonumber\\
 +
&=&\left( \frac{1-\alpha _{0}^{2}}{3\alpha
 +
_{0}^{4}}\right) \frac{1}{\left( t-t_{0}\right) ^{2}}=\frac{V_{0}}{\left( t-t_{0}\right) ^{2}},
 +
\end{eqnarray}
 +
with the constants $V_{0}$, $\alpha _{0}$ and $
 +
G_{0}$ satisfying the consistency condition
 +
\begin{equation}
 +
3V_{0}\alpha _{0}^{2}\sinh ^{2}\left(G_{0}\right)=1.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_9"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 30===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_9</p>
 +
Obtain solution of the problem [[#ES_4]]
 +
in the case $\alpha _0= \pm 1$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
\sqrt{24}\left[ \phi (G)-\phi _{0}^{+}\right] =-e^{-2G}-2G, \qquad \alpha
 +
_{0}=+1,
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
\sqrt{24}\left[ \phi (G)-\phi _{0}^{-}\right] =\ln \left| \frac{\coth G-1}{
 +
\coth G+1}\right| +e^{2G}-1, \quad \alpha _{0}=-1,
 +
\end{equation}
 +
respectively, where $\phi _{0}^{+}$ and $\phi _{0}^{-}$ are arbitrary
 +
constants of integration.
 +
 +
\begin{equation}
 +
t(G)-t_{0}^{+}=-\frac{1}{\sqrt{3V_{0}}}\int \frac{e^{-\sqrt{3/2}\phi }}{
 +
\sinh G+\cosh G}dG, \qquad \alpha _{0}=+1,
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
t(G)-t_{0}^{-}=-\frac{1}{\sqrt{3V_{0}}}\int \frac{e^{\sqrt{3/2}\phi }}{\sinh
 +
G-\cosh G}dG, \qquad \alpha _{0}=-1,
 +
\end{equation}
 +
respectively, where $t_{0}^{+}$ and $t_{0}^{-}$ are arbitrary constants of
 +
integration.
 +
 +
The explicit dependence of the physical time on the
 +
parameter $G$ reads
 +
\begin{eqnarray}
 +
t(G)-t_{0}^{+}&=&-\frac{e^{-\sqrt{3/2}\phi _{0}^{+}}}{\sqrt{3V_{0}}}
 +
\int \frac{\exp \left[ (1/4)\left( e^{-2G}+2G\right) \right] }{\sinh G+\cosh
 +
G}dG, \nonumber\\
 +
&& \alpha _{0}=+1,
 +
\end{eqnarray}
 +
and
 +
\begin{eqnarray}
 +
&&t(G)-t_{0}^{-}=-\frac{e^{\sqrt{3/2}\phi _{0}^{-}}}{\sqrt{3V_{0}}}\times \nonumber\\
 +
&&\int \frac{
 +
\left[ (\coth G-1)/(\coth G+1)\right] ^{1/4}\exp \left[ (1/4)\left(
 +
e^{2G}-1\right) \right] }{\sinh G-\cosh G}dG,  \nonumber\\
 +
&&\alpha _{0}=-1,
 +
\end{eqnarray}
 +
respectively. The parametric dependence of the scale factor is given by
 +
\begin{equation}
 +
a(G)=a_{0}^{+}\exp \left[ \frac{1}{12}\left( 2G-e^{-2G}\right) \right] ,
 +
\qquad \alpha _{0}=+1,
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
a(G)=a_{0}^{-}\exp \left[ \frac{1}{12}\left( e^{2G}+2G\right) \right] ,
 +
\qquad \alpha_{0}=-1,
 +
\end{equation}
 +
respectively, where $a_{0}^{+}$ and $a_{0}^{-}$ are arbitrary constants of
 +
integration.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_10"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 31===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_10</p>
 +
Obtain solution of the equation (\ref{fin}) with
 +
\begin{equation}
 +
\frac{1}{2V}\frac{dV}{d\phi }=\sqrt{\frac{3}{2}}\;\alpha _{1}\,\tanh G,
 +
\end{equation}
 +
where $\alpha _{1}$ is an arbitrary constant.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">With this choice, the
 +
evolution equation (\ref{fin}) takes the simple form
 +
\begin{equation}
 +
\frac{dG}{d\phi }=\sqrt{\frac{3}{2}}\left( 1+\alpha _{1}\right) ,
 +
\end{equation}
 +
with the general solution given by
 +
\begin{equation}
 +
G\left( \phi \right) =\sqrt{\frac{3}{2}}\left( 1+\alpha _{1}\right) \left(
 +
\phi -\phi _{0}\right) ,
 +
\end{equation}
 +
where $\phi _{0}$ is an arbitrary constant of integration.
 +
 +
\begin{equation}
 +
V\left( \phi \right) =V_{0}\cosh ^{\frac{2\alpha _{1}}{1+\alpha _{1}}}\left[
 +
\sqrt{\frac{3}{2}}\left( 1+\alpha _{1}\right) \left( \phi -\phi _{0}\right)
 +
\right] .  \label{kkk}
 +
\end{equation}
 +
\begin{equation}
 +
t-t_{0}=\frac{1}{\sqrt{2V_{0}}} \int \frac{d\phi }{\cosh ^{\frac{\alpha _1}{
 +
1+\alpha _1}}\left[ \sqrt{\frac{3}{2}}\left( 1+\alpha _1\right) \left( \phi
 +
-\phi _{0}\right) \right] \sinh \left[ \sqrt{\frac{3}{2}}\left( 1+\alpha _1
 +
\right) \left( \phi -\phi _{0}\right) \right] }.
 +
\end{equation}
 +
 +
\begin{equation}
 +
a=a_{0}\sinh ^{\frac{1}{3\left( 1+\alpha _1\right) }}\left[ \sqrt{\frac{3}{2}
 +
}\left( 1+\alpha _1\right) \left( \phi -\phi _{0}\right) \right] ,
 +
\end{equation}
 +
\begin{equation}
 +
q=3\tanh ^{2}\left[ \sqrt{\frac{3}{2}}\left( 1+\alpha _1\right) \left( \phi
 +
-\phi _{0}\right) \right] -1.
 +
\end{equation}
 +
 +
[[File:hyp1.jpg|center|thumb|400px|]]
 +
[[File:hyp2.jpg|center|thumb|400px|Depicted is the variation of the generalized hyperbolic cosine scalar field potential as a function of $\phi $, in the first plot, and as the variation in time, in the second plot, for different values of $\alpha _1$: $\alpha _1=0.1 $ (solid curve), $\alpha _1=0.15$ (dotted curve), $\alpha _1=0.20$ (short dashed curve), $\alpha _1=0.25$ (dashed curve), and $\alpha _1=0.30$ (long dashed curve), respectively.]]
 +
 +
<br/>
 +
----
 +
<br/>
 +
 +
[[File:hyp3.jpg|center|thumb|400px|]]
 +
[[File:hyp4.jpg|center|thumb|400px|Depicted is the time variation of the scale factor, in the first plot, and of the deceleration parameter, in the second plot, of the Universe filled with a scalar field with a generalized hyperbolic cosine self-interaction potential for different values of $\alpha _1$: $\alpha _1=0.1 $ (solid curve), $\alpha _1=0.15$ (dotted curve), $\alpha _1=0.20$ (short dashed curve), $\alpha _1=0.25$ (dashed curve), and $\alpha _1=0.30$ (long dashed curve), respectively.]]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_11"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 32===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_11</p>
 +
Obtain solution of the equation (\ref{fin}) for the case
 +
\begin{equation}
 +
G=\mathrm{arccoth}\left( \sqrt{\frac{3}{2}}\frac{\phi }{\alpha _{2}}\right)
 +
,\qquad \alpha _{2}=\mathrm{constant}.
 +
\end{equation}
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
V\left( \phi \right) =V_{0}\left( \frac{\phi }{\alpha _{2}}\right)
 +
^{-2\left( \alpha _{2}+1\right) }\left[ \frac{3}{2}\left( \frac{\phi }{
 +
\alpha _{2}}\right) ^{2}-1\right] ,  \label{mmm}
 +
\end{equation}
 +
where $V_{0}$ is an arbitrary constant of integration.
 +
 +
\begin{equation}
 +
\frac{\phi (t)}{\alpha _{2}}=\left[ \frac{\sqrt{2V_{0}}\left( \alpha
 +
_{2}+2\right) }{\alpha _{2}}\right] ^{\frac{1}{\alpha _{2}+2}}\left(
 +
t-t_{0}\right) ^{\frac{1}{\alpha _{2}+2}}.
 +
\end{equation}
 +
\begin{equation}
 +
a=a_{0}\exp \left( \frac{\phi ^{2}}{4\alpha _{2}}\right) =
 +
a_0\exp \left\{
 +
\frac{1}{4\alpha _{2}}\left[ \frac{\left( \alpha _{2}+2\right) \sqrt{2V_{0}}
 +
}{\alpha _{2}}\right] ^{\frac{2}{\alpha _{2}+2}}\left( t-t_{0}\right) ^{
 +
\frac{2}{\alpha _{2}+2}}\right\} ,
 +
\end{equation}
 +
with $a_{0}$ an arbitrary constant of integration. The deceleration
 +
parameter is given by
 +
\begin{equation}
 +
q=2\left( \frac{\phi }{\alpha _{2}}\right) ^{-2}-1=
 +
2\left[ \frac{\sqrt{2V_{0}
 +
}\left( \alpha _{2}+2\right) }{\alpha _{2}}\right] ^{-\frac{2}{\alpha _{2}+2}
 +
}\left( t-t_{0}\right) ^{-\frac{2}{\alpha _{2}+2}}-1.
 +
\end{equation}
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_12"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 33===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_12</p>
 +
Rewrite the equation (\ref{fin}) in form of the two linear differential equations for the variable $w=e^{-G}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation}
 +
\frac{dw}{d\phi }+\left[ \alpha _{3}+S\left( \phi \right) \right] w=M\left(
 +
\phi \right) ,  \label{n2}
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
\frac{dw^{3}}{d\phi }+3\left[ \alpha _{3}-S\left( \phi \right) \right]
 +
w^{3}=3M\left( \phi \right) ,  \label{n3}
 +
\end{equation}
 +
where $M\left( \phi \right)$ is a new separation function, $S\left( \phi \right) =-d\ln \left| \sqrt{V}\right| /d\phi $ and $\alpha _{3}=-\sqrt{3/2}$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_13"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 34===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_13</p>
 +
Obtain a consistency integral relation between the
 +
separation function $M(\phi )$ and the self-interaction potential $V(\phi )$, corresponding to the equations for the variable $w$, obtained in the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Equation~(\ref{n2}) can be integrated to provide
 +
\begin{equation}
 +
w=\sqrt{V}e^{-\alpha _{3}\phi }\left[ C_{0}+\int \frac{M\left( \phi \right)
 +
e^{\alpha _{3}\phi }}{\sqrt{V}}d\phi \right] ,  \label{n4}
 +
\end{equation}
 +
where $C_{0}$ is an arbitrary constant of integration. Equation~(\ref{n3})
 +
can be integrated to give
 +
\begin{equation}
 +
w=\frac{e^{-\alpha _{3}\phi }}{\sqrt{V}}\left[ C_{1}+3\int M\left( \phi
 +
\right) V^{3/2}e^{3\alpha _{3}\phi }d\phi \right] ^{1/3},  \label{n5}
 +
\end{equation}
 +
where $C_{1}$ is an arbitrary constant of integration.
 +
 +
Then the consistency relation reads
 +
\begin{equation}
 +
C_{1}+3\int M\left( \phi \right) V^{3/2}e^{3\alpha _{3}\phi }d\phi =V^{3}
 +
\left[ C_{0}+\int \frac{M\left( \phi \right) e^{\alpha _{3}\phi }}{\sqrt{V}}
 +
d\phi \right] ^{3}.  \label{n7}
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_14"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 35===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_14</p>
 +
Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \phi \right) =\sqrt{V}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The consistency relation (\ref{n7}) now reads
 +
\begin{equation}
 +
C_{1}+3\int V^{2}e^{3\alpha _{3}\phi }d\phi =V^{3}A\left( \phi \right) ,
 +
\label{n8}
 +
\end{equation}
 +
where we have denoted $A(\phi )=\left( C_{0}+e^{\alpha _{3}\phi }/\alpha
 +
_{3}\right) ^{3}$.
 +
 +
In order to solve the integral Eq.~(\ref{n8}), we rewrite
 +
it as a linear first order differential equation for $V\left( \phi \right) $
 +
\begin{equation}
 +
\frac{dV}{d\phi }+\left[ \frac{d}{d\phi }\left( \ln A^{1/3}\right) \right] V=
 +
\frac{e^{3\alpha _{3}\phi }}{A\left( \phi \right) },  \label{n9}
 +
\end{equation}
 +
with the general solution given by
 +
\begin{equation}
 +
V(\phi )=A^{-1/3}\left( \phi \right) \left[ C_{2}+\int e^{3\alpha _{3}\phi
 +
}A^{-2/3}\left( \phi \right) d\phi \right] ,  \label{nn}
 +
\end{equation}
 +
where $C_{2}$ is an arbitrary constant of integration. Now by inserting $
 +
A\left( \phi \right) $ into Eq.~(\ref{nn}) yields the expression of the
 +
scalar field potential as
 +
\begin{equation}
 +
V(\phi )=\frac{\alpha _{3}^{2}\left\{ e^{3\alpha _{3}\phi }+2C_{0}\alpha
 +
_{3}e^{2\alpha _{3}\phi }-C_{0}^{3}\alpha _{3}^{3}+\left( C_{0}\alpha
 +
+e^{\alpha _{3}\phi }\right) ^{2}\left[ \frac{C_{2}}{\alpha _{3}}
 +
-2C_{0}\alpha _{3}\ln \left| C_{0}\alpha _{3}+e^{\alpha _{3}\phi }\right|
 +
\right] \right\} }{\left( C_{0}\alpha _{3}+e^{\alpha _{3}\phi }\right) ^{3}}.
 +
\label{pot1}
 +
\end{equation}
 +
 +
Therefore the general solution of Eq.~(\ref{fin}) is given
 +
by
 +
\begin{equation}
 +
G=\mathrm{arccoth}\left( \frac{ 1+w^{2}} { 1-w^{2}}
 +
\right) =\ln \left| \frac{1}{w}\right| ,
 +
\end{equation}
 +
where
 +
\begin{equation}
 +
w(\phi )=\sqrt{V(\phi )}
 +
e^{-\alpha _{3}\phi }\left( C_{0}+\frac{e^{\alpha _{3}\phi }}{\alpha _{3}}\right) .
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="ES_15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 36===
 +
<p style= "color: #999;font-size: 11px">problem id: ES_15</p>
 +
Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \phi \right) =V^{-3/2}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The consistency relation (\ref{n7}) now reads
 +
\begin{equation}
 +
C_{0}+\int \frac{e^{\alpha _{3}\phi }}{V^{2}}d\phi =\frac{\left( C_{1}+\frac{
 +
1}{\alpha _{3}}e^{3\alpha _{3}\phi }\right) ^{1/3}}{V}.  \label{b1}
 +
\end{equation}
 +
 +
In order to solve Eq.~(\ref{b1}), we rewrite it as a linear first order
 +
differential equation for $V\left( \phi \right) $
 +
\begin{equation}
 +
\frac{dV}{d\phi }+\left[ \frac{d}{d\phi }\ln \left| \frac{1}{\left( C_{1}+
 +
\frac{1}{\alpha _{3}}e^{3\alpha _{3}\phi }\right) ^{1/3}}\right| \right] V
 +
=-\frac{e^{\alpha _{3}\phi }}{\left( C_{1}+\frac{1}{\alpha _{3}}e^{3\alpha
 +
_{3}\phi }\right) ^{1/3}}.  \label{b2}
 +
\end{equation}
 +
 +
Equation~(\ref{b2}) can be easily integrated, and yields the following
 +
solution
 +
\begin{equation}
 +
V\left( \phi \right) =\left( C_{1}+\frac{1}{\alpha _{3}}e^{3\alpha _{3}\phi
 +
}\right) ^{1/3}
 +
\times \left[ C_{3}-\int \frac{e^{\alpha _{3}\phi }}{\left( C_{1}+
 +
\frac{1}{\alpha _{3}}e^{3\alpha _{3}\phi }\right) ^{2/3}}d\phi \right] .
 +
\label{pot2}
 +
\end{equation}
 +
where $C_{3}$ is an arbitrary constant of integration.
 +
 +
Therefore the general solution of Eq.~(\ref{fin}) is given
 +
by
 +
\begin{equation}
 +
G=\mathrm{arccoth}\left( \frac{ 1+w^{2}}{1-w^{2}}
 +
\right) =\ln \left| \frac{1}{w}\right| ,
 +
\end{equation}
 +
where
 +
\begin{equation}
 +
w(\phi )=\left[ \frac{e^{-\alpha
 +
_{3}\phi }}{\sqrt{V(\phi )}}\right] \left( C_{1}+\frac{e^{3\alpha _{3}\phi }}{\alpha
 +
_{3}}\right) ^{1/3}.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<!--
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 37===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 34===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 35===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 36===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 37===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 38===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 39===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 40 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 41===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 42===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 18 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
-->

Latest revision as of 21:56, 18 June 2015



The discovery of the Higgs particle has confirmed that scalar fields play a fundamental role in subatomic physics. Therefore they must also have been present in the early Universe and played a part in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The relevant evolution equations are the Friedmann and Klein-Gordon equations, reading (in the units in which $c = \hbar = 8 \pi G = 1$) \[ \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0, \] where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter. Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the scalar field $\varphi$.



Problem 1

problem id: SSC_0

Show that the Hubble parameter cannot increase with time in the single scalar cosmology.


Problem 2

problem id: SSC_00

Show that if the Universe is filled by a substance which satisfies the null energy condition then the Hubble parameter is a semi-monotonically decreasing function of time.


Problem 3

problem id: SSC_0_1

For single-field scalar models express the scalar field potential in terms of the Hubble parameter and its derivative with respect to the scalar field.


Problem 4

problem id: SSC_1

Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.


Problem 5

problem id: SSC_2

Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.


Problem 6

problem id: SSC_3

Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.


Problem 7

problem id: SSC_4

Obtain explicit time dependence for the scale factor in the model of problem #SSC_2.


Problem 8

problem id: SSC_5

Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem #SSC_2.


Problem 9

problem id: SSC_6_00

Describe possible final states for the Universe governed by a single scalar field at large times.


Problem 10

problem id: SSC_6_0

Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.


Problem 11

problem id: SSC_6_1

Consider a single scalar cosmology described by the quadratic potential \[ V = v_0 + \frac{m^2}{2}\, \varphi^2. \] Describe all possible stationary points and final states of the Universe in this model.


Problem 12

problem id: SSC_7

Obtain actual solutions for the model of previous problem using the power series expansion \[ H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ... \] Consider the cases of $v_0 > 0$ and $v_0 < 0$.


Problem 13

problem id: SSC_8

Estimate main contribution to total expansion factor of the Universe.


Problem 14

problem id: SSC_9_0

Explain difference between end points and turning points of the scalar field evolution.


Problem 15

problem id: SSC_9

Show that the exponentially decaying scalar field \[ \varphi(t) = \varphi_0 e^{-\omega t} \] can give rise to unstable end points of the evolution.


Problem 16

problem id: SSC_10

Analyze all possible final states in the model of previous problem.


Problem 17

problem id: SSC_11

Express initial energy density of the model of problem #SSC_9 in terms of the $e$-folding number $N$.


Problem 18

problem id: SSC_12

Estimate mass of the particles corresponding to the exponential scalar field considered in problem #SSC_9.


Problem 19

problem id: SSC_13

Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.


Problem 20

problem id: SSC_14_

When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)


Exact Solutions for the Single Scalar Cosmology

after Harko (arXiv:1310.7167v4)


Problem 21

problem id: ES_0

Rewrite the equations of the single scalar cosmology \begin{equation} 3H^{2} =\rho _{\phi }=\frac{\dot{\phi}^{2}}{2}+V\left( \phi \right) , \label{H} \end{equation} \begin{equation} 2\dot{H}+3H^{2}=-p_{\phi }=-\frac{\dot{\phi}^{2}}{2}+V\left( \phi \right), \label{H1} \end{equation} \begin{equation} \ddot{\phi}+3H\dot{\phi}+V^{\prime }\left( \phi \right) = 0, \label{phi} \end{equation} in terms of the parameter $G(\phi)$ introduced as \[\dot\phi^2=2V(\phi)\sinh^2 G(\phi).\]


Problem 22

problem id: ES_1

Obtain equation to determine the parameter $G$ as function of time.


Problem 23

problem id: ES_2

Obtain equation to determine the parameter $G$ as function of scale factor.


Problem 24

problem id: ES_3

Obtain the deceleration parameter $q$ in terms of the parameter $G$.


Problem 25

problem id: ES_4

Obtain solution of the equation (\ref{fin}) with \begin{equation} V=V_{0}\exp \left( \sqrt{6}\alpha _{0}\phi \right). \label{pp} \end{equation} in the case $\alpha _0\neq \pm 1$.


Problem 26

problem id: ES_5

Obtain explicit solution of the problem #ES_4 in the case $\alpha _{0}=\pm \sqrt{2}$.


Problem 27

problem id: ES_6

Obtain explicit solution of the problem #ES_4 in the case $\alpha _{0}=\pm \sqrt{3/2}$.


Problem 28

problem id: ES_7

Obtain explicit solution of the problem #ES_4 in the case $\alpha _{0}=\pm 2/\sqrt{3}$.


Problem 29

problem id: ES_8

Obtain a particular solution of the problem #ES_4 in the case $G(\phi)=G_{0}=\mathrm{constant}$.


Problem 30

problem id: ES_9

Obtain solution of the problem #ES_4 in the case $\alpha _0= \pm 1$.


Problem 31

problem id: ES_10

Obtain solution of the equation (\ref{fin}) with \begin{equation} \frac{1}{2V}\frac{dV}{d\phi }=\sqrt{\frac{3}{2}}\;\alpha _{1}\,\tanh G, \end{equation} where $\alpha _{1}$ is an arbitrary constant.


Problem 32

problem id: ES_11

Obtain solution of the equation (\ref{fin}) for the case \begin{equation} G=\mathrm{arccoth}\left( \sqrt{\frac{3}{2}}\frac{\phi }{\alpha _{2}}\right) ,\qquad \alpha _{2}=\mathrm{constant}. \end{equation}


Problem 33

problem id: ES_12

Rewrite the equation (\ref{fin}) in form of the two linear differential equations for the variable $w=e^{-G}$.


Problem 34

problem id: ES_13

Obtain a consistency integral relation between the separation function $M(\phi )$ and the self-interaction potential $V(\phi )$, corresponding to the equations for the variable $w$, obtained in the previous problem.


Problem 35

problem id: ES_14

Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \phi \right) =\sqrt{V}$.


Problem 36

problem id: ES_15

Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \phi \right) =V^{-3/2}$.